INFRARED SYNCHROTRON RADIATION: FROM THE PRODUCTION TO THE USE

<u>Stefano Lupi</u>

Department of Physics Sapienza University of Rome, CNR-IOM, INFN and <u>SISSI@Elettra</u> (EU-Italy)

FREQUENCY AND TIME-RESOLVED TERAHERTZ SPECTROSCOPY SISSI@Elettra TeraFermi@Elettra

Outline

- Production and Properties of Infrared Synchrotron Radiation;
- Experimental Apparatus: Michelson Interferometry+Infrared Microscopy
- Solid-State Applications:

Superconduting Transition (THz and Far-IR Spectroscopy) Gap determination Spectral-Weight and penetration depth Metal-to-Insulator Transitions

Biology:

Cellular absoption and replication

- Geological Applications: Microscopic fluid inclusions
- Chemistry: Adbsorption at solid surfaces
- New developments

THz non linear Spectroscopy Go beyond the diffraction limit: Infrared Nanoscopy

Electromagnetic Spectrum

IR Units: 200 cm⁻¹=300 K= 25 meV = 50 μ m = 7 THz

Phonons; Drude absorption; Gaps in superconductors; Molecular Rotations;

Molecular Vibrations **Fingerprints** for Chemistry, Biology, And Geology

FIR MIR NIR

Molecular Overtones and Combinations bands; Excitons; Gaps in semiconductors

Infrared History

Volume 1.

July-August, 1893.

Number 1

THE

PHYSICAL REVIEW.

A STUDY OF THE TRANSMISSION SPECTRA OF CERTAIN SUBSTANCES IN THE INFRA-RED.

BY ERNEST F. NICHOLS.

 $W^{\rm ITHIN}$ a few years the study of obscure radiation has been greatly advanced by systematic inquiry into the laws of dispersion of the infra-red rays by Langley,¹ Rubens,² Rubens and Snow,⁸ and others. Along with this advancement has come the more extended study of absorption in this region. The absorption of atmospheric gases has been studied by Langley¹ and by Ångstrom.⁴ Ångstrom⁵ has made a study of the absorption of certain vapors in relation to the absorption of the same substances in the liquid state, and the absorption of a number of liquids and solids has been investigated by Rubens.6

In the present investigation, the object of which was to extend this line of research, the substances studied were : plate glass, hard rubber, quartz, lamp-black, cobalt glass, alcohol, chlorophyll, water, oxyhæmoglobin, potassium alum, ammonium alum, and ammonium-iron alum.

⁶ Annalen der Physik und Chemie, N. F. XLV., p. 258.

¹ Report on Mt. Whitney Expedition, Profess. Papers, U. S. Signal Service, XV.

² Annalen der Physik und Chemie, N. F. XLV., p. 238.

⁸ Annalen der Physik und Chemie, N. F. XLVI., p. 529-

⁴ Bihang till K. Svenska Vet.-Akad. Handlingar, Band 15, Afd. 1, No. 9.

⁵ Ofversigt af Kongl. Vetenskaps-Academiens Forhandlingar, 1890, No. 7, Stockholm. I

~ 50 IRSR Beamlines in the World

_	1976	Meyer and Lagarde (LURE, Orsay) publish the first paper	
		on IRSR	
	1981	Duncan and Yarwood observe at Daresbury the first IRSR	
	emission		
	1985	The first IRSR spectrum (on N_2O) is collected at Bessy	
		(Berlin)	
	1986	The first beamline becomes operating at UVSOR	
		(Japan)	
	1987	Beamline at Brookhaven (USA)	
	1992-94	Beamlines at Orsay (France), Lund (Sweden), Daresbury	
		(GB)	
	1995	First international workshop on IRSR, Rome (Italy)	
	2001	First IR beamline in Italy (SINBAD@DA Φ NE)	
	2006	Second beamline in Italy (SISSI@Elettra)	
	2015	First THz beamline in Italy (TERASPARC@SPARC)	
	2017	Second THz beamline in Italy (TERAFERMI@Elettra)	

Production of IRSR

Standard Bending radiation

(emitted during the circular trajectory in the bending due to the constant B field)

P (λ) = 4.4 10¹⁴ x I x $Θ_{\rm H}$ x *bw* x (ρ/λ)^{1/3} photons s⁻¹

I is the current in amperes,

 $\Theta_{\rm H}$ (rads) the horizontal collection angle,

bw the bandwidth in per cent, λ the wavelength, and ρ the radius of the bending

 $\Phi_{V-NAT}(mrad) = 1.66(1000 \text{ x } \lambda (\mu m) / \rho(m))^{1/3}$

at ALS for $\lambda = 100 \ \mu m$ $\longrightarrow \Phi_{V-NAT} = 50 \ mrads$

Very large emission angles SISSI: H=70 mrads; V=25 mrads

Edge Emission

(emitted at the entrance (exit) of a bending magnet due to the rapid variation of the B field)

Edge radiation

In the Far-Field approximation:

P = α x I x $\gamma^4 \Theta^2 / (1 + \gamma^2 \Theta^2)^2$ photons s⁻¹

I is the current in amperes, $\Theta(rads)$ the emission angle (concentrated in $\Theta_{max} \sim 1/\gamma \sim 10$ mrads)

IRSR FLUX

The IRSR flux and Brilliance depend only on:

-beam current -source size/emittance -extraction aperture -transmission optics

Instead scarcely depend on the machine energy

IRSR Brilliance

The most important figure of merit for IRSR is the **Brilliance**

 $100A^{1/2}D^{2}$

 $B(\mathbf{v})\Delta\mathbf{v}\mathbf{\epsilon}t^{1/2}$

%N =

Where: A detector area, D* detectivity, **B brilliance**, Δv bandwidth, ε etendue, t measuring time, ξ optical efficiency

Limiting Noise

Advantages of IRSR

SISSI (Source for Imaging and Spectroscopy in the Infrared)

65±5 (H) x 25 (V) mrad

	Figure	Dimension HXV (cm²)
M1	Plane	30X15
M2	Ellipsoidal	35X18
M3	Plane	15X8
M4	Ellipsoidal	16X10

Brilliance gain at SISSI

A.Perucchi, L.Vaccari, and S.Lupi, *Infrared Spectroscopy with Synchrotron Radiation* In Synchrotron Radiation: Theory and Applications, Ed. S. Mobilio et al., (2015)

Increasing the Far-IR Flux: Coherent vs Incoherent Synchrotron Radiation

Production of Coherent Synchrotron Radiation Two main methods in a Synchrotron Machine

 $\begin{array}{c} \text{Low-} \alpha \text{ mode} \\ \text{Needed to change the magnetic optics:} \\ \text{Only dedicated runs} \end{array}$

Low-e beam energy

Injected the machine at low-E: Reducing life-time and stability

Momentum compaction factor α : $\Delta p/p = \alpha = \sigma/L$ Where σ is the bunch length and L is the length of the ideal trajectory inside the machine

SISSI@Elettra: E. Karanzoulis, A. Perucchi and S.L.,2007

IRIS@Bessy-II: U. Schade et al, PRL 2003

Instrumentation I Measuring a source power spectrum: Michelson Interferometer

Instrumentation II Infrared Microscopy

Infrared Microscope---->Beam Condenser

Visualize and measure small and/or no-homogenous sample (size<100 μm)

with a high spatial resolution

In the IR spatial Resolution is determined by diffraction

$$\delta = 0.61 \frac{\lambda}{NA} \approx \lambda$$

For example with a 36x objective with NA=0.5, one obtains:

at λ = 10 µm (1000 cm⁻¹):12 µm

at λ = 2.5 µm (4000 cm⁻¹):3 µm

Experimental Techniques

Reflectivity, Transmittance, and Absorption R+T+A=1

 $\mathbf{R}(\boldsymbol{\omega}) = \frac{\mathbf{I}\mathbf{R}(\boldsymbol{\omega})}{\mathbf{I}\mathbf{0}(\boldsymbol{\omega})}$ $R(\boldsymbol{\omega}) = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$

Via Kramers-Kronig

Transformation real and immaginary part of the optical response functions (n, ε, σ) can be obtained

$$\tilde{n} = \sqrt{\tilde{\varepsilon}}$$

$$\varepsilon_1 = n^2 - k^2 = \varepsilon_\infty - \frac{4\pi}{\omega}\sigma_2$$

$$\varepsilon_2 = 2nk = \frac{4\pi}{\omega}\sigma_1$$

Reflectivity experiments

Interferometer

 $\begin{array}{c} \mbox{Reference:} \\ \mbox{gold evaporated } in \\ situ \\ \mbox{Reflectivity:} \\ \mbox{R = } I_R^{crys} / I_R^{gold} \\ \downarrow \\ \mbox{Kramers-Kronig transf.} \\ \downarrow \\ \mbox{optical conductivity} \\ \sigma(\omega) \end{array}$

Detector

Single crystals may be very small:

(FLUX GAIN)

Superconductivity today

Basic optics of Superconductors

 $\int [\sigma_1(\omega, T > Tc) - \sigma_1(\omega, T < Tc)] d\omega = \omega_{ps}^2/8 = n_s e^2/m^* - > \lambda = c/\omega_{ps}$ **Ferrel-Glover-Tinkham Rule**

200

THz Reflectivity of Superconducting Diamond

s-wave Dirty-Limit Regime; $2\Delta(2.6 \text{ K})=12\pm1 \text{ cm}^{-1}$ $2\Delta/k_BT_C=3.2\pm0.5$

M. Ortolani, S. L. et al, PRL 2006

Solid-State Applications II Metal-to-Insulator Transition (MIT)

(BRILLIANCE GAIN)

IRSR Microscopy at high pressures

 $R_{diam/sam} = I_R / I_0$

THz Reflectivity of Superconducting H3S

F. Capitani et al., Nature Physics 2017

Generalities on Vanadium dioxides VO₂

Strong Interplay between electron-lattice and electron-electron interactions Driving MIT mechanism Hubbard or Peierls?

High Pressure may disentangle the two mechanisms

P-dependent infrared measurements on VO₂

Simultaneous measurements of reflectance and transmittance at 300 K in the M1 monoclinic insulating phase on a thin VO₂ sample

E. Arcangeletti et al, Phys. Rev. Lett. 98, 196406 (2007)

Pressure Induced Polimerization of Polyacetylene in Zeolite

Medical and Biological Application of IR Microscopy

Vibration Frequencies correspond to finger-print for the molecule

Infrared Group frequency region

IRSR spectrum of a single cell during mitosis

The cell physiology is not altered under IRSR illumination

Spanatialidiatribution of the tains and lipids addring the call of the call of

P. Dumas et al, 2004

Studying hair by IRSR microscopy

Intern.J. of Cosmetics Science. 23 1-6 (2001) 369-374

P. Dumas et al, 2004

Geological Applications: liquid inclusion in minerals Brilliance gain

A. Perucchi, S.L. et al, 2006

Interstellar micron size dust analysis

comparison SRS-Black body:
3 micron Particles from asteroid "Orgueil"

Particles collected from the MIR shuttle

- 1.THz IV generation sources: Non linear and time-resolved spectroscopy;
- 2.Beating the diffraction limit→IRSR Nanoscopy

Linear vs. Non Linear Spectroscopy Linear Spectroscopy Low Power Source Small Perturbation \rightarrow Sample retains its equilibrium properties Non linear and Time-Resolved Spectroscopy **High Power/Pulse** Strong Perturbation → out of equilibrium states manipulation of matter through em

fields

Linear versus Non-Linear Optical Response

Actually the linear/non-linear electrodynamics regimes can be estimated through the ratio

Linear regime $E_{THz} \approx 10-100 \text{ V/cm} \rightarrow Q << 1 \leftarrow \rightarrow T = T(\omega) \leftarrow \rightarrow \sigma = \sigma(\omega)$

Non linear regime \rightarrow Q=1

Putting $\omega/2\pi=1$ THz and p_F , Q=1 for $E_{THz}\approx50$ kV/cm \rightarrow then the optical functions start to be dependent on the applied electric field. For instance: T=T(ω ,E₀) $\leftarrow \rightarrow \sigma=\sigma(\omega,E_0)$

THz Sources for Non Linear and Pump-Probe Spectroscopy

Figures of merit of a pump source:

1)Energy per pulse ≈1 μJ-10 mJ;

2)Pulse duration \rightarrow sub-ps scale (more relaxed than in VIS-Near-

IR) \rightarrow an excitation starts to exist after half a cycle (T \approx 100 fs-10 ps);

3)Rep rate tens of Hz to MHz;

4)Frequency tunability;

5)Associate electric field 100 KV/cm (1 mV/Å) to 100 MV/cm (1V/Å) \rightarrow Atomic field;

6)Associate magnetic field \approx 1 T

Coherent Radiation from sub-ps electron bunches

SPARC LAB: Linear accelerator at 250 MeV

Achieved THz Performances

	Electron beam parameters	Single bunch (VB mode: max compression)	4-bunches per train (VB mode + laser comb)
	Charge/bunch (pC)	300	50
	Energy (MeV)	130	100
	Bunch length (fs)	160	200
	Rep. Rate (Hz)		10

Radiation parameters	SPARC (single bunch)	SPARC (4-bunches/train)
Energy per pulse (μ J)	40	0.6 10 ⁻⁶ (@ 1 THz)
Peak power (MW)	> 100	3 (@ 1 THz)
Electric field (MV/cm)	1.5	> 10
Pulse duration (fs)	120	< 100
Bandwidth	50 GHz-5 THz	50 GHz-5 THz

E.Chiadroni et al, APL 2013

Insulating state in the bulk due to Spin-Orbits

S

Non-Linear THz response of TI Dirac Fermions

Non-Linear THz response of TI Dirac carriers

According to the classical equation of motion one electron in an electric field E is accelerated with a momentum variation $d\mathbf{p}/dt=-e\mathbf{E}$. $\mathbf{E}=\mathbf{E}_0\cos\omega t \rightarrow \mathbf{p}=(-e\mathbf{E}_0/\omega)\sin\omega t$

Linear current vs. E

 $\varepsilon(p) = v_F \sqrt{p_x^2 + p_y^2}$ $v_x = \frac{d\varepsilon}{dp_x} = \frac{v_F p_x}{\sqrt{p_x^2 + p_y^2}} = -v_F \operatorname{sgn} \omega t$ For n electrons one has an electric current $J_{\rm x}(t) = -env_{\rm x}(t)$ $= e^{2}nv_{F}\frac{4}{\pi}[\sin\omega t + \frac{1}{3}\sin 3\omega t + ...]$ Unlinear current vs. E

Dirac Electrons

Dirac THz Non-Linearity in Bi₂Se₃ Topological Insulator

Go beyond the Diffraction Limit→IRSR Nanoscopy

The resolving capability of an optical component is ultimately limited by the diffraction (Abbe's theory, 1873). The minimum resolution (δ) for the optical component are thus limited by its aperture size, and expressed by:

Beyond the Diffraction Limit: The use of Evanescent waves

In order to enhance the spatial resolution one should increase the wavevector (k_x) bandwidth Δk_x :

For propagating ligth the ultimate limit of $k_x = k = 2\pi/\lambda$

Being $k=\sqrt{k_x^2 + k_y^2 + kz^2}$, $k_x >> k = 2\pi/\lambda$ if k_z is immaginary

An evanescent wave (along a direction) has along this direction an esponentially decreasing amplitude:

 $E(\mathbf{r},\mathbf{t}) = \mathsf{E}_0 e^{ik_x x} e^{ik_y y} e^{-kzz}$

Due to the evanescent nature, this wave which maximizes the spatial resolution should be analyzed at distances on the order of $k_z^{-1} \approx \lambda$ from the source

Generating and Capturing the **Evanescent Waves**

SPATIAL RESOLUTION

INDEPENDENT OF λ

nanoscale dimension comparable to apex-size.

Comparison among different Spatially Resolved Spectroscopies

Visualizing Plasmon Propagation and Scattering in Single Carbon Nanotube (Optics at Finite q)

Figure 1 | Infrared s-SNOM of one-dimensional plasmons in carbon nanotubes. a, Illustration of s-SNOM. Infrared (IR) light is focused onto the apex of a metal-coated AFM tip, the large near-field momentum of which enables optical excitation of plasmons in the carbon nanotube (CNT) on a hBN substrate. Interference between the tip-excited plasmon wave and its reflection from the nanotube end leads to periodic modulation of tip-scattered infrared radiation measured by an HgCdTe detector in the far field. b, Three-dimensional plot of the near-field scattering intensity (height) along a representative SWNT. Prominent modulation of the infrared scattering intensity from the one-dimensional plasmon can be observed over the whole nanotube. Inset: AFM topography image of the same SWNT. Scale bars, 100 nm.

Z. Shi, Nature Photonics 2015, IRSR from ALS IR Beamline

Acknowledgments

The LNF-INFN SPARC Lab group: E. Chiadroni