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Macroscopic dielectric theory

Maxwellʼs equations
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Macroscopic dielectric theory

In a medium it is convenient to explicitly introduce induced charges and currents 

With no external charges and currents

Wednesday, July 10, 2013



�∇× �E = −1

c

∂ �B

∂t

�∇ · �D = 4πρ

�∇× �H =
4π

c

�
�J + �Jext

�
+

1

c

∂ �D

∂t

�∇ · �B = 0

�D = �E + 4π �P
�H = �B + 4π �M

�∇× �E = −1

c

∂ �B

∂t

�∇ · �D = 0

�∇× �H =
4π

c

�J +
1

c

∂ �D

∂t

�∇ · �B = 0

Macroscopic dielectric theory

In a medium it is convenient to explicitly introduce induced charges and currents 

With no external charges and currents

Electric polarization
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Macroscopic dielectric theory

In a medium it is convenient to explicitly introduce induced charges and currents 

With no external charges and currents

Electric polarization

Magnetic polarization
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Macroscopic dielectric theory

In a medium it is convenient to explicitly introduce induced charges and currents 

With no external charges and currents

Electric polarization

Magnetic polarization

Induced current density
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H
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Macroscopic dielectric theory

If we assume the response is linear, we can write:

where α,σ e χ are the polarizability, conductivity and susceptibility tensors, 
respectively.

represent the response of the medium to the electromagnetic field

For optical frequencies we can neglect susceptibility (χ=0) so that  
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Macroscopic dielectric theory

Conductivity (σ) and  polarizability (α) both contain the material response giving rise to  
two induced currents, a polarization current:

and a ohmic current

By introducing into the fourth of Maxwellʼs equations we get:
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= �Johm · �E = σE2

Macroscopic dielectric theory

If we consider solutions of Maxwellʼs equations in the form sin(ωt) we see immediately 
that Johm is in phase with E while Jpol is out phase by π/2. Polarization current does not  
give rise to absorption and is responsible of dispersion (refraction index). Ohmic 
current, in turn produce an absorpion:

The absorbed power per unit volume is given by: 
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Macroscopic dielectric theory

As with simple a.c. circuits, absorption and dispersion can be treated with a single 
complex quantity.
If we consider a field in the form

we get

in which we have introduced the complex dielectric function:

We introduce the dielectric tensor ε 
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Macroscopic dielectric theory

By introducing the complex dielectric constant into Maxwellʼs equations  we get

As well known a class of solutions of the wave equations are plane waves:
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ñ2 = �̃

�1 = n2 − κ2

�2 = 2nκ

Macroscopic dielectric theory

whose dispersion law

suggest a complex refraction

so that

and therefore

ω2 =
c2

�̃
q2

ñ = n + iκ
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Macroscopic dielectric theory

A plane wave propagating along the x axis can be written in terms of the complex 
dielectric index:

x

E

c

ωκ
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Macroscopic dielectric theory

Phase and group velocity
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Phase and group velocity
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Macroscopic dielectric theory

The absorption coefficient  η is defined by the equation:

which describes the attenuation of the average energy flux, which is proportional to 
the square of the field , so:
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R = r∗r =
(n− 1)2 + κ2

(n + 1)2 + κ2

Macroscopic dielectric theory

The complex reflection coefficient is given by the generalization of Frenel law:

So the reflectivity is:

If κ>>n, R≈1 and thw wave is rapidly attenuated in the medium. This happens, for 
example in metals at low frequency (high σ)

r =
ñ− 1

ñ + 1
=

(n− 1) + iκ

(n + 1) + iκ
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�P (t) =

� t

−∞
G (t− t�) �E (t�) dt�

Macroscopic dielectric theory

The real and imaginary part of the dielectric function and in general of any function 
describing the linear response to a physical stimulus are not  independent of each 
other. This is a consequence of the causality principle,  which states that the 
response cannot occur in time preceding the stimulus.

Let us focus on polarization (response) and the electric field (stimulus).
The following dependence will hold:

i.e. the polarization at a given time t  depends on the history of the electric field 
weighted by the Green function G.
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Macroscopic dielectric theory

For a sinusoidal field (and a substitution of a variable) we ca write:

so we the complex response function (polarizability in this case) can always be 
expressed as: 

Wednesday, July 10, 2013



P

+∞�

−∞

α (ω)

ω − ω0
dω = iπα (ω0)

� (ω) = 1 +
1

iπ
P

+∞�

−∞

� (ω�)− 1

ω� − ω
dω�

Macroscopic dielectric theory

And its integral along the path in the figure is zero, i.e. by applying Cauchyʼs theorem:

ω0

Im ω

Re ω

where P indicates the principal part of 
the integral.
For the dielectric function we obtain the 
dispersion relation:

 α(ω )If          decreases to zero away from the real axis, the function α(ω)/(ω−ω0) has a single 
pole in ω0.
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Macroscopic dielectric theory

From:

we immediately obtain that

we can therefore rewrite the integral and write the Kramers-Kronig dispersion relations 
between the real and imaginary part of the dielectric function:

α̃ (ω) =

� ∞

0

G (τ) eiωτdτ
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Macroscopic dielectric theory

Dispersion relation for reflectivity
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Macroscopic dielectric theory

Dispersion relation for reflectivity

We measure:
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Macroscopic dielectric theory

Dispersion relation for reflectivity

We measure:

If we consider the natural logarithm of r(ω):
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�1 (0) = 1 +
2

π
P

∞�

0

�2 (ω�)

ω�
dω�

Macroscopic dielectric theory

Static sum rule. 
For ω=0 we have:

so, if the static dielectric constant is ≠1, the imaginary part wil be ≠0 in some part of 
the spectrum, i.e the medium must absorb radiation. Because of the 1/ω  factor in the 
integrand,  the static dielectric function will be greater if the absorption occurs at low  
frequency.
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Macroscopic dielectric theory

Absorption localized at ω= ω0

therefore:
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Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:
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Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:
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Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:

whose solution is
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Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:

whose solution is
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0 − ω2)− iγω]

Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:

whose solution is

We obtain the dipole moment per unit volume by multiplying y by the charge e and by 
the oscillator density N. The dielectric function is therefore:
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Macroscopic dielectric theory

Drude-Lorentz model.
We describe the medium as an ensemble of harmonic oscillators whose resonance 
frequency  and damping are  ω0 and γ,  respectively:

whose solution is

We obtain the dipole moment per unit volume by multiplying y by the charge e and by 
the oscillator density N. The dielectric function is therefore:
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Macroscopic dielectric theory

So:

ℏω0= 4eV

ℏγ= 1eV
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Macroscopic dielectric theory

Integration by parts 
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Macroscopic dielectric theory

Integration by parts 

General behaviour!
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Macroscopic dielectric theory
By considering the complex refraction index, one can identify regions in which 
transmissivity, absorption or reflectivity are the main effects:
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Macroscopic dielectric theory
By considering the complex refraction index, one can identify regions in which 
transmissivity, absorption or reflectivity are the main effects:
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m

Macroscopic dielectric theory

Optical properties of metals can be obtained from the Lorentz-Drude model by  
setting ω0=0 and by defining the plasma frequency:

The dielectric functions becomes:
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Macroscopic dielectric theory

Free electron metal wi th 
ℏωp=8eV and ℏγ=0.5 eV
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σ =
ω�2

4π

σ0 = lim
ω→0

ω�2

4π
=

Ne2

mγ

Macroscopic dielectric theory

The conductivity, σ is given by:

which in the statc limit becomes:

which can be compared with the expression derived in the transport theory to find 
that γ=1/τ
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Macroscopic dielectric theory

At very low frequencies (ω<<1/τ) the reflectivity is:
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Macroscopic dielectric theory

Free electron metal wi th 
ℏωp=8eV and ℏγ=0.5 eV
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Macroscopic dielectric theory

At frequencies much higher than the plasma frequency we get:

which represent the behaviour of any material at high energy.
If we now consider the KK relation:

At high energy we can neglect ω´2 in the integrand denominator because ϵ2 
decreases very rapidly (as 1/ω3, superconvergence theorem) and therefore:
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Macroscopic dielectric theory

At frequencies much higher than the plasma frequency we get:

which represent the behaviour of any material at high energy.
If we now consider the KK relation:

At high energy we can neglect ω´2 in the integrand denominator because ϵ2 
decreases very rapidly (as 1/ω3, superconvergence theorem) and therefore:
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Macroscopic dielectric theory

so we get the sum rule:

which relates he dielectric function to the total number of electrons contributing to 
it. We can define the effective number of electrons contributing to the dielectric 
function up to a frequency ωmax:
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Macroscopic dielectric theory

The other KK relation

at high frequency becomes

and by comparison with the expression of the dielectric function at high energy we 
get:
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Macroscopic dielectric theory

Free electron metal wi th 
ℏωp=8eV and ℏγ=0.5 eV
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Macroscopic dielectric theory

Normal incidence Ag experimental Reflectivity
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Macroscopic dielectric theory

Experimental dielectric function of Ag:
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Macroscopic dielectric theory

E x p e r i m e n t a l 
Reflectivity of Al

R
efl

ec
tiv

ity
 (%

)

Wednesday, July 10, 2013



Macroscopic dielectric theory
Reflection and refraction at an arbitrary angle

����k
��� =

��� �k��
��� =

ω

c
All waves have the same frequency, ω, and

vφ =
ω

k� =
c

n
⇒ k� =

����k�
��� =

ω
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(1− δ + iβ)The refracted wave has phase velocity

�E = �E0e
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�E � = �E �
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�k · �r0 = �k� · �r0 = �k�� · �r0

kx = k�
x = k��

x

φ = φ��;
sin φ

sin φ� = n

|kz| = |k�
z| = |k��

z |
k sin φ = k� sin φ� = k�� sin φ��

Macroscopic dielectric theory

Kinematic boundary conditions:

at the boundary (z=0):

nothing occurs along x

so along z

therefore:
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ñ = (1− δ + iβ)

φc = arcsin (1− δ)

θc =
√

2δ

Macroscopic dielectric theory

If we write the complex index of refraction as

and assume β→0 then n≃1-δ and we can 
have total external reflection for angles 
above the critical angle

or, in terms of the glancing incidence
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Macroscopic dielectric theory Dynamic boundary conditions for 
an s polarized wave:�E = �E0e
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Macroscopic dielectric theory Dynamic boundary conditions for 
an s polarized wave:

E0 = E
�
0 = E

��
0

H0 cos φ−H
��
0 cos φ = H

�
0 cos φ

�

tangential electric and magnetic 
fields are continuos:
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Macroscopic dielectric theory Dynamic boundary conditions for 
an s polarized wave:

E0 = E
�
0 = E

��
0

H0 cos φ−H
��
0 cos φ = H

�
0 cos φ

�

tangential electric and magnetic 
fields are continuos:

�H (�r, t) = ñ

�k

k
× �E (�r, t)

(E0 − E ��
0 ) cos φ = ñE �

0 cos φ�

since

we obtain

�E = �E0e
−i(ωt−�k·�r)

�E � = �E �
0e

−i(ωt−�k�·�r)

�E �� = �E ��
0e−i(ωt− �k��·�r)
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E �
0

E0
=

2 cos φ

cos φ +
�

n2 − sin2 φ

E ��
0

E0
=

cos φ−
�

n2 − sin2 φ

cos φ +
�

n2 − sin2 φ

Rs =

���cos φ−
�

n2 − sin2 φ
���
2

���cos φ +
�

n2 − sin2 φ
���
2

Macroscopic dielectric theory

For an s polarized wave:

so the reflectivity is
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E �
0

E0
=

2n cos φ

n2 cos φ +
�

n2 − sin2 φ

E ��
0

E0
=

n2 cos φ−
�

n2 − sin2 φ

n2 cos φ +
�

n2 − sin2 φ

Rp =

���n2 cos φ−
�

n2 − sin2 φ
���
2

���n2 cos φ +
�

n2 − sin2 φ
���
2

Macroscopic dielectric theory

For a p polarized wave:

so the reflectivity is
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Macroscopic dielectric theory

Reflectivity as a function of ϕ and n

Brewster angle
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θb = arctan
�

n2

n1

�

Macroscopic dielectric theory

Brewsterʼs angle

When the reflected 
a n d r e f r a c t e d 
waves fo rm an 
angle of 90˚ i.e. 
when:

the reflected wave 
is 100% s polarized 
(if no absorption 
occurs!)
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Macroscopic dielectric theory

Ag s- and p- polarized reflectivity at ℏω=20eV
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Macroscopic dielectric theory

Experimental reflectivity of Ag for p-polarized light
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