Maxwell's equations

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho$$
$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{B} = 0$$

In a medium it is convenient to explicitly introduce induced charges and currents

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \qquad \qquad \vec{D} = \vec{E} + 4\pi \vec{P} \\ \vec{\nabla} \cdot \vec{D} = 4\pi\rho \\ \vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \left(\vec{J} + \vec{J}_{ext} \right) + \frac{1}{c} \frac{\partial \vec{D}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} = 0 \qquad \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{D} = 0 \\ \vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t} \\ \vec{\nabla} \cdot \vec{D} = 0 \\ \vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} = 0 \end{cases}$$

In a medium it is convenient to explicitly introduce induced charges and currents

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{D} = 4\pi\rho$$

$$\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \left(\vec{J} + \vec{J}_{ext} \right) + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{D} = 0$$

$$\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{D} = 0$$

$$\vec{\nabla} \times \vec{H} = \frac{4\pi}{c} \vec{J} + \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

In a medium it is convenient to explicitly introduce induced charges and currents

In a medium it is convenient to explicitly introduce induced charges and currents

 \vec{P} , \vec{M} and \vec{J} represent the response of the medium to the electromagnetic field If we assume the response is linear, we can write:

$$\vec{P} = \alpha \vec{E}$$

 $\vec{J} = \sigma E$
 $\vec{M} = \chi \vec{B}$

where α,σ e χ are the polarizability, conductivity and susceptibility tensors, respectively.

For optical frequencies we can neglect susceptibility (χ =0) so that $\vec{B} = \vec{H}$

By introducing into the fourth of Maxwell's equations we get:

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \left(\sigma \vec{E} + \alpha \frac{\partial \vec{E}}{\partial t} \right) + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

Conductivity (σ) and polarizability (α) both contain the material response giving rise to two induced currents, a polarization current:

$$\vec{J}_{pol} = \alpha \frac{\partial \vec{E}}{\partial t}$$

and a ohmic current

$$\vec{J}_{ohm} = \sigma \vec{E}$$

The absorbed power per unit volume is given by:

$$\left(\frac{\partial W}{\partial t}\right)_{abs} = \overline{\vec{J} \cdot \vec{E}} = \sigma \overline{E^2}$$

If we consider solutions of Maxwell's equations in the form $\sin(\omega t)$ we see immediately that J_{ohm} is in phase with E while J_{pol} is out phase by $\pi/2$. Polarization current does not give rise to absorption and is responsible of *dispersion* (refraction index). Ohmic current, in turn produce an *absorption*:

$$\left(\frac{\partial W}{\partial t}\right)_{abs} = \overline{\vec{J}_{ohm} \cdot \vec{E}} = \sigma \overline{E^2}$$

We introduce the dielectric tensor $\boldsymbol{\epsilon}$

$$\vec{D} = \epsilon \vec{E}$$
$$\epsilon = 1 + 4\pi\alpha$$

As with simple a.c. circuits, absorption and dispersion can be treated with a single *complex* quantity.

If we consider a field in the form

$$\vec{E} = \vec{E}_0 e^{-i\omega t}$$

we get

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c}\vec{J} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t} = \frac{1}{c}\left[\epsilon\frac{\partial \vec{E}}{\partial t} - 4\pi\vec{E}\right] = \frac{\tilde{\epsilon}}{c}\frac{\partial \vec{E}}{\partial t}$$

in which we have introduced the complex dielectric function:

$$\tilde{\epsilon} = \epsilon_1 + i\epsilon_2 = \epsilon + i\frac{4\pi\sigma}{\omega}$$

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \left(\sigma \vec{E} + \alpha \frac{\partial \vec{E}}{\partial t} \right) + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

$$\vec{E} = \vec{E}_0 e^{-i\omega t}$$
$$\frac{\partial \vec{E}}{\partial t} = -i\omega \vec{E}_0 e^{-i\omega t} = -i\omega \vec{E}$$

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \sigma \vec{E} + \frac{1}{c} (4\pi\alpha + 1) \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \sigma \vec{E} + \frac{\epsilon}{c} \frac{\partial \vec{E}}{\partial t}$$
$$= \left[\frac{4\pi}{c} \sigma + (-i\omega) \frac{\epsilon}{c} \right] \frac{i}{\omega} \frac{\partial \vec{E}}{\partial t} = \left[\frac{\epsilon}{c} + i \frac{4\pi\sigma}{c} \right] = \frac{\tilde{\epsilon}}{c} \frac{\partial \vec{E}}{\partial t}$$

By introducing the complex dielectric constant into Maxwell's equations we get

$$\nabla^2 \vec{E} - \frac{\tilde{\epsilon}}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

As well known a class of solutions of the wave equations are plane waves:

$$\vec{E} = \vec{E}_0 e^{i(\vec{q}\cdot\vec{r}-\omega t)} + c.c.$$

whose dispersion law

$$\omega^2 = \frac{c^2}{\tilde{\epsilon}}q^2$$

suggest a complex refraction

$$\tilde{n} = n + i\kappa$$

so that

$$\tilde{n}^2 = \tilde{\epsilon}$$

and therefore

$$\epsilon_1 = n^2 - \kappa^2$$
$$\epsilon_2 = 2n\kappa$$

A plane wave propagating along the x axis can be written in terms of the complex dielectric index:

$$\vec{E} = \vec{E}_0 e^{i(\vec{q} \cdot \vec{r} - \omega t)} + c.c. = \vec{E}_0 e^{-i\omega\left(t - \frac{\tilde{n}x}{c}\right)} + c.c. = \vec{E}_0 e^{-\frac{\omega\kappa x}{c}} e^{-i\omega\left(t - \frac{nx}{c}\right)} + c.c.$$

Phase and group velocity

Phase and group velocity

The absorption coefficient η is defined by the equation:

$$\overline{W} = \overline{W}_0 e^{-\eta x}$$

which describes the attenuation of the average energy flux, which is proportional to the square of the field, so:

$$\eta = \frac{2\omega\kappa}{c} = \frac{\omega\epsilon_2}{nc} = \frac{4\pi\sigma}{nc}$$

The complex reflection coefficient is given by the generalization of Frenel law:

$$r = \frac{\tilde{n} - 1}{\tilde{n} + 1} = \frac{(n - 1) + i\kappa}{(n + 1) + i\kappa}$$

So the reflectivity is:

$$R = r^* r = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

If $\kappa >>n$, R ≈ 1 and thw wave is rapidly attenuated in the medium. This happens, for example in metals at low frequency (high σ)

The real and imaginary part of the dielectric function and in general of any function describing the linear response to a physical stimulus are **not** independent of each other. This is a consequence of the **causality principle**, which states that the response cannot occur in time preceding the stimulus.

Let us focus on polarization (response) and the electric field (stimulus). The following dependence will hold:

$$\vec{P}(t) = \int_{-\infty}^{t} G(t - t') \vec{E}(t') dt'$$

i.e. the polarization at a given time t depends on the history of the electric field weighted by the Green function G.

For a sinusoidal field (and a substitution of a variable) we ca write:

$$\vec{P}(t) = \int_{-\infty}^{t} G(t - t') \,\vec{E}_0 e^{-i\omega t'}(t') \,dt' = \vec{E}_0 e^{-i\omega t} \int_0^{\infty} G(\tau) \,e^{i\omega \tau} d\tau$$

so we the complex response function (polarizability in this case) can **always** be expressed as:

$$\tilde{\alpha}\left(\omega\right) = \int_{0}^{\infty} G\left(\tau\right) e^{i\omega\tau} d\tau$$

If $\tilde{\alpha}(\omega)$ decreases to zero away from the real axis, the function $\alpha(\omega)/(\omega-\omega_0)$ has a single pole in ω_0 .

And its integral along the path in the figure is zero, i.e. by applying Cauchy's theorem:

From:

$$\tilde{\alpha}\left(\omega\right) = \int_{0}^{\infty} G\left(\tau\right) e^{i\omega\tau} d\tau$$

we immediately obtain that

$$\epsilon\left(-\omega\right)=\epsilon^{*}\left(\omega\right)$$

we can therefore rewrite the integral and write the Kramers-Kronig dispersion relations between the real and imaginary part of the dielectric function:

$$\epsilon_1(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\omega' \epsilon_2(\omega')}{\omega'^2 - \omega^2} d\omega'$$
$$\epsilon_2(\omega) = -\frac{2\omega}{\pi} P \int_0^\infty \frac{\epsilon_1(\omega') - 1}{\omega'^2 - \omega^2} d\omega'$$

Dispersion relation for reflectivity

$$r\left(\omega\right) = \frac{(n-1) + i\kappa}{(n+1) + i\kappa} = |r\left(\omega\right)| e^{i\theta}$$

$$\mathsf{R}(\omega) = |r(\omega)|^2 = \left|\frac{(n-1) + i\kappa}{(n+1) + i\kappa}\right|^2$$

$$\ln (r(\omega)) = \ln (|r(\omega)|) + i\theta(\omega) = \frac{1}{2}\ln (\mathsf{R}(\omega)) + i\theta(\omega)$$

$$\theta\left(\omega\right) = -\frac{2\omega}{\pi} P \!\!\!\int\limits_{0}^{\infty} \frac{\ln\left(\left|r\left(\omega'\right)\right|\right)}{\omega'^{2} - \omega^{2}} d\omega' = -\frac{\omega}{\pi} P \!\!\!\int\limits_{0}^{\infty} \frac{\ln\left(\mathsf{R}\left(\omega'\right)\right)}{\omega'^{2} - \omega^{2}} d\omega'$$

Dispersion relation for reflectivity

$$r(\omega) = \frac{(n-1) + i\kappa}{(n+1) + i\kappa} = |r(\omega)| e^{i\theta}$$

We measure:

$$\mathsf{R}(\omega) = |r(\omega)|^2 = \left|\frac{(n-1) + i\kappa}{(n+1) + i\kappa}\right|^2$$

$$\ln (r(\omega)) = \ln (|r(\omega)|) + i\theta(\omega) = \frac{1}{2}\ln (\mathsf{R}(\omega)) + i\theta(\omega)$$

$$\theta\left(\omega\right) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\ln\left(\left|r\left(\omega'\right)\right|\right)}{\omega'^{2} - \omega^{2}} d\omega' = -\frac{\omega}{\pi} P \int_{0}^{\infty} \frac{\ln\left(\mathsf{R}\left(\omega'\right)\right)}{\omega'^{2} - \omega^{2}} d\omega'$$

Dispersion relation for reflectivity

$$r(\omega) = \frac{(n-1) + i\kappa}{(n+1) + i\kappa} = |r(\omega)| e^{i\theta}$$

We measure:

$$\mathsf{R}(\omega) = |r(\omega)|^2 = \left|\frac{(n-1) + i\kappa}{(n+1) + i\kappa}\right|^2$$

If we consider the natural logarithm of $r(\omega)$:

$$\ln (r(\omega)) = \ln (|r(\omega)|) + i\theta(\omega) = \frac{1}{2}\ln (\mathsf{R}(\omega)) + i\theta(\omega)$$

$$\theta\left(\omega\right) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\ln\left(\left|r\left(\omega'\right)\right|\right)}{\omega'^{2} - \omega^{2}} d\omega' = -\frac{\omega}{\pi} P \int_{0}^{\infty} \frac{\ln\left(\mathsf{R}\left(\omega'\right)\right)}{\omega'^{2} - \omega^{2}} d\omega'$$

Static sum rule. For $\omega=0$ we have:

$$\epsilon_1(0) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\epsilon_2(\omega')}{\omega'} d\omega'$$

so, if the static dielectric constant is $\neq 1$, the imaginary part wil be $\neq 0$ in some part of the spectrum, i.e the medium must absorb radiation. Because of the $1/\omega$ factor in the integrand, the static dielectric function will be greater if the absorption occurs at low frequency.

Absorption localized at $\omega = \omega_0$

$$\epsilon_2\left(\omega\right) = A\delta\left(\omega - \omega_0\right)$$

$$\epsilon_1\left(0\right) = 1 + \frac{2}{\pi} \frac{A}{\omega_0}$$

therefore:

$$\epsilon_1(\omega) = 1 + \frac{\omega_0^2 \left[\epsilon_1(0) - 1\right]}{\omega_0^2 - \omega^2}$$
$$\epsilon_2(\omega) = \frac{\pi}{2} \omega_0 \left[\epsilon_1(0) - 1\right] \delta(\omega - \omega_0)$$

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

$$m\frac{d^2y}{dt^2} + m\gamma\frac{dy}{dt} + \omega_0^2 my = eE_0e^{-i\omega t}$$

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

$$m\frac{d^2y}{dt^2} + m\gamma\frac{dy}{dt} + \omega_0^2 my = eE_0e^{-i\omega t}$$

whose solution is

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

$$m\frac{d^2y}{dt^2} + m\gamma\frac{dy}{dt} + \omega_0^2 my = eE_0e^{-i\omega t}$$

whose solution is

$$y = \frac{eE_0e^{-i\omega t}}{m\left[(\omega_0^2 - \omega^2) - i\gamma\omega\right]}$$

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

$$m\frac{d^2y}{dt^2} + m\gamma\frac{dy}{dt} + \omega_0^2 my = eE_0e^{-i\omega t}$$

whose solution is

$$y = \frac{eE_0e^{-i\omega t}}{m\left[(\omega_0^2 - \omega^2) - i\gamma\omega\right]}$$

We obtain the dipole moment per unit volume by multiplying y by the charge e and by the oscillator density *N*. The dielectric function is therefore:

Drude-Lorentz model.

We describe the medium as an ensemble of harmonic oscillators whose resonance frequency and damping are ω_0 and γ , respectively:

$$m\frac{d^2y}{dt^2} + m\gamma\frac{dy}{dt} + \omega_0^2 my = eE_0e^{-i\omega t}$$

whose solution is

$$y = \frac{eE_0e^{-i\omega t}}{m\left[(\omega_0^2 - \omega^2) - i\gamma\omega\right]}$$

We obtain the dipole moment per unit volume by multiplying y by the charge e and by the oscillator density *N*. The dielectric function is therefore:

$$\tilde{\epsilon}(\omega) = 1 + 4\pi\tilde{\alpha} = 1 + 4\pi\frac{P}{E} = 1 + \frac{4\pi e^2 N}{m} \frac{1}{(\omega_0^2 - \omega^2) - i\gamma\omega}$$

So:

$$\epsilon_1 = 1 + \frac{4\pi e^2 N}{m} \frac{\omega_0^2 - \omega^2}{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma\omega\right)^2}$$
$$\epsilon_2 = \frac{4\pi e^2 N}{m} \frac{\gamma\omega}{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma\omega\right)^2}$$

Integration by parts

$$\epsilon_{2}(\omega) = -\frac{1}{\pi} P \int_{0}^{\infty} \left[\frac{d\epsilon_{1}(\omega')}{d\omega'} \right] \cdot \ln \left[\frac{\omega' + \omega}{\omega' - \omega} \right] d\omega'$$

Integration by parts

$$\epsilon_{2}(\omega) = -\frac{1}{\pi} P \int_{0}^{\infty} \left[\frac{d\epsilon_{1}(\omega')}{d\omega'} \right] \cdot \ln \left[\frac{\omega' + \omega}{\omega' - \omega} \right] d\omega'$$

By considering the complex refraction index, one can identify regions in which transmissivity, absorption or reflectivity are the main effects:

By considering the complex refraction index, one can identify regions in which transmissivity, absorption or reflectivity are the main effects:

Optical properties of metals can be obtained from the Lorentz-Drude model by setting $\omega_0=0$ and by defining the *plasma frequency:*

$$\omega_p^2 = \frac{4\pi N e^2}{m}$$

The dielectric functions becomes:

$$\tilde{\epsilon} = \left(1 - \frac{\omega_p^2}{\omega^2 + \gamma^2}\right) + i \frac{\gamma \omega_p^2}{\omega^3 + \gamma^2 \omega}$$

Free electron metal with $\hbar\omega_{\rm p}$ =8eV and $\hbar\gamma$ =0.5 eV

The conductivity, σ is given by:

$$\sigma = \frac{\omega \epsilon_2}{4\pi}$$

which in the statc limit becomes:

$$\sigma_0 = \lim_{\omega \to 0} \frac{\omega \epsilon_2}{4\pi} = \frac{Ne^2}{m\gamma}$$

which can be compared with the expression derived in the transport theory to find that $\gamma\!\!=\!\!1/\tau$

At very low frequencies ($\omega << 1/\tau$) the reflectivity is:

$$R \cong 1 - 2\sqrt{\frac{\omega}{2\pi\sigma}} = 1 - 2\sqrt{\frac{2\omega}{\omega_p^2\tau}}$$

Free electron metal with $\hbar\omega_{\rm p}$ =8eV and $\hbar\gamma$ =0.5 eV

At frequencies much higher than the plasma frequency we get:

$$\epsilon_1 \cong 1 - \frac{\omega_p^2}{\omega^2}$$
$$\epsilon_2 \cong \frac{\omega_p^2 \gamma}{\omega^3}$$

which represent the behaviour of any material at high energy. If we now consider the KK relation:

$$\epsilon_1(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\omega' \epsilon_2(\omega')}{\omega'^2 - \omega^2} d\omega'$$

At high energy we can neglect ω^{2} in the integrand denominator because ε_{2} decreases very rapidly (as $1/\omega^{3}$, superconvergence theorem) and therefore:

$$\epsilon_1(\omega)_{\omega\to\infty} \cong 1 - \frac{2}{\omega^2 \pi} \int_0^\infty \omega' \epsilon_2(\omega') d\omega'$$

At frequencies much higher than the plasma frequency we get:

$$\epsilon_1 \cong 1 - \frac{\omega_p^2}{\omega^2}$$
$$\epsilon_2 \cong \frac{\omega_p^2 \gamma}{\omega^3}$$

which represent the behaviour of any material at high energy. If we now consider the KK relation:

$$\epsilon_1(\omega) = 1 + \frac{2}{\pi} P \int_0^\infty \frac{\omega' \epsilon_2(\omega')}{\omega'^2 - \omega^2} d\omega'$$

At high energy we can neglect ω^2 in the integrand denominator because ε_2 decreases very rapidly (as $1/\omega^3$, superconvergence theorem) and therefore:

$$\epsilon_1(\omega)_{\omega \to \infty} \cong 1 - \frac{2}{\omega^2 \pi} \int_0^\infty \omega' \epsilon_2(\omega') d\omega'$$

so we get the sum rule:

$$\int_{0}^{\infty} \omega' \epsilon_2(\omega') d\omega' = \frac{\pi}{2} \omega_p^2 = \frac{2\pi^2 e^2 N}{m}$$

which relates he dielectric function to the total number of electrons contributing to it. We can define the effective number of electrons contributing to the dielectric function up to a frequency ω_{max} :

$$\int_{0}^{\omega_{max}} \omega' \epsilon_2(\omega') d\omega' \cong \frac{\pi}{2} \frac{4\pi e^2}{m} N_{eff}$$

The other KK relation

$$\epsilon_2(\omega) = -\frac{2\omega}{\pi} P \int_0^\infty \frac{\epsilon_1(\omega') - 1}{\omega'^2 - \omega^2} d\omega'$$

at high frequency becomes

$$\epsilon_2(\omega)_{\omega\to\infty} = \frac{2}{\pi\omega} \int_0^\infty (\epsilon_1(\omega') - 1) d\omega'$$

and by comparison with the expression of the dielectric function at high energy we get:

$$\int_{0}^{\infty} \left(\epsilon_1\left(\omega\right) - 1\right) d\omega = 0$$

Free electron metal with $\hbar\omega_{\rm p}$ =8eV and $\hbar\gamma$ =0.5 eV

Normal incidence Ag experimental Reflectivity

Experimental dielectric function of Ag:

E x p e r i m e n t a l Reflectivity of Al

Reflection and refraction at an arbitrary angle

All waves have the same frequency, ω , and $|\vec{k}| = |\vec{k''}| = \frac{\omega}{c}$

The refracted wave has phase velocity $v_{\phi} = \frac{\omega}{k'} = \frac{c}{n} \Rightarrow k' = \left|\vec{k'}\right| = \frac{\omega}{c}(1 - \delta + i\beta)$

Kinematic boundary conditions:

at the boundary (z=0): $\vec{k} \cdot \vec{r_0} = \vec{k'} \cdot \vec{r_0} = \vec{k''} \cdot \vec{r_0}$ nothing occurs along x $k_x = k'_x = k''_x$ so along z $\begin{vmatrix} k_z \end{vmatrix} = \begin{vmatrix} k'_z \end{vmatrix} = \begin{vmatrix} k''_z \end{vmatrix}$ $k \sin \phi = k' \sin \phi' = k'' \sin \phi''$ therefore: $\phi = \phi''; \quad \frac{\sin \phi}{\sin \phi'} = n$

If we write the complex index of refraction as

$$\tilde{n} = (1 - \delta + i\beta)$$

and assume $\beta \rightarrow 0$ then $n \approx 1-\delta$ and we can have total *external* reflection for angles above the critical angle

$$\phi_c = \arcsin\left(1 - \delta\right)$$

or, in terms of the glancing incidence

$$\vec{E} = \vec{E}_0 e^{-i\left(\omega t - \vec{k} \cdot \vec{r}\right)}$$

$$\vec{E'} = \vec{E'_0} e^{-i\left(\omega t - \vec{k'} \cdot \vec{r}\right)}$$

Wednesday, July 10, 2013

Dynamic boundary conditions for an **s polarized** wave:

 $\vec{E} = \vec{E}_0 e^{-i\left(\omega t - \vec{k} \cdot \vec{r}\right)}$

$$\vec{E'} = \vec{E'_0} e^{-i\left(\omega t - \vec{k'} \cdot \vec{r}\right)}$$

Dynamic boundary conditions for an **s polarized** wave:

tangential electric and magnetic fields are continuos:

$$E_0 = E'_0 = E''_0$$

$$H_0 \cos \phi - H_0'' \cos \phi = H_0' \cos \phi'$$

 $\vec{E} = \vec{E}_0 e^{-i\left(\omega t - \vec{k} \cdot \vec{r}\right)}$

$$\vec{E'} = \vec{E'_0} e^{-i\left(\omega t - \vec{k'} \cdot \vec{r}\right)}$$

Dynamic boundary conditions for an *s* polarized wave:

tangential electric and magnetic fields are continuos:

$$E_0 = E'_0 = E''_0$$

$$H_0 \cos \phi - H_0'' \cos \phi = H_0' \cos \phi'$$

since

$$\vec{H}\left(\vec{r},t\right) = \tilde{n}\frac{\vec{k}}{k} \times \vec{E}\left(\vec{r},t\right)$$

we obtain

$$(E_0 - E_0'')\cos\phi = \tilde{n}E_0'\cos\phi'$$

For an **s polarized** wave:

$$\frac{E'_0}{E_0} = \frac{2\cos\phi}{\cos\phi + \sqrt{n^2 - \sin^2\phi}}$$
$$\frac{E''_0}{E_0} = \frac{\cos\phi - \sqrt{n^2 - \sin^2\phi}}{\cos\phi + \sqrt{n^2 - \sin^2\phi}}$$

so the reflectivity is

$$R_s = \frac{\left|\cos\phi - \sqrt{n^2 - \sin^2\phi}\right|^2}{\left|\cos\phi + \sqrt{n^2 - \sin^2\phi}\right|^2}$$

Reflectivity as a function of ϕ and n

Brewster's angle

Incident ray Reflected ray (unpolarised) (polarised) When the reflected and refracted $\Theta_{\rm B}$ waves form an angle of 90° i.e. when: $\theta_b = \arctan\left(\frac{n_2}{d}\right)$ the reflected wave is 100% s polarized Refracted ray (if no absorption (slightly polarised) occurs!)

Ag s- and p- polarized reflectivity at $\hbar\omega$ =20eV

Wednesday, July 10, 2013

Experimental reflectivity of Ag for p-polarized light

Glancing incidence reflection as a function of β/δ

- finite β/δ rounds the sharp angular dependence
- cutoff angle and absorption edges can enhance the sharpness
- note the effects of oxide layers and surface contamination

(Henke, Gullikson, Davis)