
H =
1

2m

�
�p + e

�A (�r, t)

c

�2

− eφ (�r, t) + V (�r)

�E = −�∇φ− 1

c

∂ �A

∂t
�B = �∇× �A

Optical properties: microscopic theory

The single particle Hamiltonian of an electron in an external electromagnetic field is:

where the electric and magnetic fields are given by:
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L = T − V =
1

2
mv2 − qφ +

q

c
�A · �v

pi =
∂L

∂q̇i
= mvi +

q

c
Ai

T =
1

2
mv2 =

1

2m

�
�p− q

c
�A
�2

Optical properties: microscopic theory

The kinetic energy is therefore:

from which:

The hamiltonian derives from the fact that the Lagrangian for a charged particle is:

so the components of the canonic generalized moment are:

H =
1

2m

�
�p + e

�A (�r, t)

c

�2

− eφ (�r, t) + V (�r)
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�∇ · �A = 0

φ = 0

∇2 �A− 1

c2

∂2 �A

∂t2
= 0

Optical properties: microscopic theory

When no external charges or currents are present, is is customary to define vector and 
scalar potentials in the so called “transverse gauge”:

which, inserted into Maxwellʼs equations give that the vector potential satisfies the 
equation:
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1

2m
p2 +

e

2mc

�
�p · �A + �A · �p

�
+

e

2mc2
A2 + V (�r)

�
ψ = Eψ

H =
1

2m
p

2 +
e

mc

�A · �p + V (�r)

�
�p, �A

�
= 0

Optical properties: microscopic theory

By expanding the hamiltonian, we can write the Schrödinger equation:

The square term in the vector potential can be neglected

≈0

Moreover because of the transverse gauge we have that 

So:
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�A =
�

ω

�Aωe−i(�q·�r−ωt) + c.c.

H1 =
e

mc

�A · �p = −ie�
mc

�A · �∇

H = H0 + H1

Optical properties: microscopic theory

Which means that we can write the hamiltonian in the form

in which H1 is the perturbation due to the external electromagnetic field, given by:

Since the vector potential satisfies the wave equation, it can be expressed as a 
superposition of plane waves:
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�E = −1

c

∂ �A

∂t

�E =
�

ω

iω

c
�Aωe−i(�q·�r−ωt) + c.c.

Optical properties: microscopic theory

From the expression for the vector potential

and reminding that in our gauge

we get immediately

�A =
�

ω

�Aωe−i(�q·�r−ωt) + c.c.
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Wf,i =
2π

� |�f | H1 |i�|2 δ (Ef − Ei − �ω)

= 2π�
�

e

mc

�2 ��� �Aω · �f | ei�q·�r �∇ |i�
���
2
δ (Ef − Ei − �ω)

ei�q·�r = 1 + i�q · �r + . . .

Optical properties: microscopic theory

The Fermi golden rule gives the transition probability per unit time from a the initial 
state i  to the final state f as:

The oscillating term is in the first approximation

The modulus of the wave vector, |q| is given by 2π/λ . For example at 100eV its value is 
|q|(ω=100eV)≈0.05Å-1: the scalar product is negligible in the region where the wave 
functions are significantly ≠ 0
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Wf,i = 2π�
� e

mc

�2 ��� �Aω · �f | �∇ |i�
���
2
δ (Ef − Ei − �ω) =

=
2π

�

� e

mc

�2 ��� �Aω · �f | �p |i�
���
2
δ (Ef − Ei − �ω)

Optical properties: microscopic theory

We can therefore write the transition probability in the dipole approximation as:
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�E = �E0e
i(�q·�r−ω t) + c.c. = �E0e

−iω(t− ñx
c ) + c.c. = �E0e

−ωκx
c e−iω(t−nx

c ) + c.c.

Macroscopic dielectric theory

A plane wave propagating along the x axis can be written in terms of the complex 
dielectric index:

x

E

c

ωκ
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W = W 0e
−ηx

∂W

∂t
=

c

n
ηW ; η =

n

c

1

W

∂W

∂t

Optical properties: microscopic theory

The absorption coefficient  η is defined by the equation:

We see immediately that:

and, of course

η =
2ωκ

c
=

ω�2

nc
=

4πσ

nc
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η =

�
i,f Wi,f�ω

c
nW

�2 (ω) =
4π2e2

m2

1

ω2

�
if

|ê · �f | �p |i�|2 δ (Ef − Ei − �ω)

Optical properties: microscopic theory

The absorption coefficient is the energy absorbed per unit time and unit volume 
divided by the average energy flux:

i.e.:

From which:

η (ω) =
4π2e2

m2c

1

nω

�
if

|ê · �f | �p |i�|2 δ (Ef − Ei − �ω)
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[�p,H0] = −i��∇V (�r)

[�r,H0] = i� �p

m

Since |f� and |i� are eigenstates of the unperturbed hamiltonian and:

Optical properties: microscopic theory

we can write
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[�p,H0] = −i��∇V (�r)

[�r,H0] = i� �p

m

Since |f� and |i� are eigenstates of the unperturbed hamiltonian and:

�Mf,i = �f | �p |i�

= − 1

Ef − Ei
�f | [�p,H0] |i�

=
i�
ωf,i

�f | �∇V (�r) |i�

= imωf,i �f |�r |i�

Optical properties: microscopic theory

we can write
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dipole velocity

[�p,H0] = −i��∇V (�r)

[�r,H0] = i� �p

m

Since |f� and |i� are eigenstates of the unperturbed hamiltonian and:

�Mf,i = �f | �p |i�

= − 1

Ef − Ei
�f | [�p,H0] |i�

=
i�
ωf,i

�f | �∇V (�r) |i�

= imωf,i �f |�r |i�

Optical properties: microscopic theory

we can write
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dipole velocity

dipole acceleration

[�p,H0] = −i��∇V (�r)

[�r,H0] = i� �p

m

Since |f� and |i� are eigenstates of the unperturbed hamiltonian and:

�Mf,i = �f | �p |i�

= − 1

Ef − Ei
�f | [�p,H0] |i�

=
i�
ωf,i

�f | �∇V (�r) |i�

= imωf,i �f |�r |i�

Optical properties: microscopic theory

we can write
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dipole velocity

dipole acceleration

dipole length

[�p,H0] = −i��∇V (�r)

[�r,H0] = i� �p

m

Since |f� and |i� are eigenstates of the unperturbed hamiltonian and:

�Mf,i = �f | �p |i�

= − 1

Ef − Ei
�f | [�p,H0] |i�

=
i�
ωf,i

�f | �∇V (�r) |i�

= imωf,i �f |�r |i�

Optical properties: microscopic theory

we can write
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FL =
1

π

γ/2

(Ef − Ei)
2 + (γ/2)2

Optical properties: microscopic theory

The Dirac δ function in real cases becomes a Lorentzian line shape:

In which γ≈ℏ/τ is the full width at half maximum (FWHM) and accounts for the decay of 
the excited state.
In the limit  γ→0, the Lorentzian  becomes a Dirac δ.
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�
ψc,kf

�� ei�q·�rê · �p |ψv,ki�

Optical properties: microscopic theory

Interband transitions

the initial and final state wavevectors 
differ by the photon wavevector and by 
a reciprocal lattice vector. Since the 
photon wavevector is 3 oders of 
magnitude smaller than the Brilluoin 
zone, it can be neglected: transitions 
are vertical

The matrix element for the optical 
transition for band states becomes:

since the wavefunctions are Bloch 
functions, the matrix element is 0 
unless:

E
le

c
tr
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n
 e

n
e
rg

y

k

Ei

Ef

ℏω
Ev

0 π/a

�kf = �ki + �q + �h
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Optical properties: microscopic theory
Dispersion for Electrons and Photons
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Optical properties: microscopic theory

Absorption band
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Optical properties: microscopic theory

Interband transitions
For band states, the optical transition matrix element can be written as 
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Optical properties: microscopic theory

Interband transitions
For band states, the optical transition matrix element can be written as 

which describes the probability amplitude for transitions between pairs of band v and c 
(valence and conduction bands).
The dielectric function at ω is obtained by integrating over all possible transitions 
within the first Brillouin zone:
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Optical properties: microscopic theory

Interband transitions
For band states, the optical transition matrix element can be written as 

which describes the probability amplitude for transitions between pairs of band v and c 
(valence and conduction bands).
The dielectric function at ω is obtained by integrating over all possible transitions 
within the first Brillouin zone:

If we can assume the matrix element is constant, ε2 is proportional to the Joint 
Density Of States:
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Optical properties: microscopic theory

Interband transitions

The JDOS has a form similar to the Density 
of States (DOS):

which can be written as:
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JDOS (�ω) =

�

�ω=Ec(�k)−Ev(�k)
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(2π)3

dS����∇�k
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Optical properties: microscopic theory
Interband transitions

Ge band structure
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JDOS (�ω) =
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�ω=Ec(�k)−Ev(�k)

2

(2π)3

dS����∇�k

�
Ec(�k )− Ev(�k)
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Optical properties: microscopic theory
Interband transitions

Imaginary part of Ge dielectric function
theory (---) and experiment (⎯)

Ge band structure
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Optical properties: microscopic theory

Experimental dielectric function of Ag:
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Optical properties: microscopic theory
Ag band structure

Wednesday, July 10, 2013



Optical properties: microscopic theory
Ag band structure

Wednesday, July 10, 2013



Optical properties: microscopic theory

Ag band structure
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Optical properties: microscopic theory
Ag band structure
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Optical properties: microscopic theory

Ag band structure
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Optical properties: microscopic theory

Ag band structure

15 eV
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Optical properties: microscopic theory

Ag band structure

15 eV

10 eV
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Optical properties: microscopic theory

Ag band structure

15 eV

10 eV

22 eV
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Optical properties: microscopic theory

Experimental dielectric function of Ag:
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Optical properties: microscopic theory

The fcc Brillouin zone
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Optical properties: microscopic theory

Indirect  phonon assisted transitions
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η(ω1) =
8π3�e2N2

cm4n1n2
2ω1ω2
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Optical properties: microscopic theory
Two photon transitions

With intense radiation sources, one can have two photon processes:

In which N2 is the photon density at frequency ω2 and D is the two photon transition 
matrix element:

where γ represent all the possible intermediate states.
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Optical properties: microscopic theory

Two photon absorption (---) in the Ag- ion in RbBr compared with one photon 
absorption (⎯)
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En = Eg −
e4
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conduction
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Optical properties: microscopic theory

The formation of electron -hole pairs 
creates a sytem composed of two 
particle attracting each other. The 
relative energy levels fall in the 
forbidden gap and are observable in 
the absorption spectrum. They are 
hydrogen like states and are called 
excitons:
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Optical properties: microscopic theory
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Optical properties: microscopic theory

Eccitoni in GaAs
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