Introduction to group theory

Symmetry operations of the ammonia molecule

Symmetry operations of the equilateral triangle

Rotation by $2\pi/3$ around the center

Rotation by $2*2\pi/3$ around the center

Reflection about the yz plane

Reflection about the yz plane followed by a rotation by $2\pi/3$ around the center

Equivalent to a single reflection operation!

Wednesday, July 10, 2013

Rotation by $2\pi/3$ around the center followed by a reflection by about the yz plane

Equivalent to **a different** single reflection operation!

Definition of groups

A collection of elements A, B, C, ... form a group when

I. The product of any two elements of the group is itself an element of the group. For example, relations of the type AB = C are valid for all members of the group.

2. The associative law is valid - i.e., (AB)C = A(BC).

3. There exists a unit element E (also called the identity element) such that the product of E with any group element leaves that element unchanged AE = EA = A.

4. For every element there exists an inverse, $A^{-1}A = AA^{-1} = E$.

The 6 symmetry operations of the equilateral triangle:

В

А

Ο

E) The identity operation ("do nothing")
A) Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by 2ττ/3 around O
F) Rotation by 4ττ/3 (or -2ττ/3) around O

The 6 symmetry operations of the equilateral triangle:

E) The identity operation ("do nothing")
A) Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by 2π7/3 around O
F) Rotation by 4π7/3 (or -2π7/3) around O

Form a group (C_{3v})

B

E) The identity operation ("do nothing")
A) Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by 2ττ/3 around O
F) Rotation by 4ττ/3 (or -2ττ/3) around O

E) The identity operation ("do nothing")
A) Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by 2ττ/3 around O
F) Rotation by 4ττ/3 (or -2ττ/3) around O

We can set up a multiplication table for the group C_{3v} :

	E	A	B	С	D	F
E	Ε	Α	В	С	D	F
A	Α	Ε	D	F	В	С
B	В	F	Ε	D	С	A
С	С	D	F	Ε	Α	В
D	D	С	Α	В	F	Е
F	F	В	С	A	Ε	D

	Ε	A	В	С	D	F
Ε	Ε	Α	В	С	D	F
A	Α	Е	D	F	В	С
B	В	F	Ε	D	С	Α
С	С	D	F	Ε	Α	В
D	D	С	Α	В	F	Ε
F	F	В	С	Α	Ε	D

	Ε	A	В	С	D	F
Ε	Е	Α	В	С	D	F
A	Α	Ε	D	F	В	С
В	В	F	Ε	D	С	Α
С	С	D	F	Ε	Α	В
D	D	С	Α	В	F	Е
F	F	В	С	Α	Ε	D

	Ε	A	В	С	D	F
Е	Ε	Α	В	С	D	F
A	Α	Ε	D	F	В	С
В	В	F	Ε	D	С	Α
C	С	D	F	Ε	Α	В
D	D	С	Α	В	F	Ε
F	F	В	С	Α	Е	D

	E	В
Ε	Е	В
В	В	Е

	E	С
E	Е	С
С	С	Ε

	Ε	A	B	С	D	F
Ε	Ε	Α	В	С	D	F
A	Α	Е	D	F	В	С
В	В	F	Ε	D	С	Α
С	С	D	F	Е	Α	В
D	D	С	Α	В	F	Ε
F	F	В	С	Α	Ε	D

	Ε	D	F
Ε	Ε	D	F
D	D	F	Е
F	F	Ε	D

	Ε	D	F
Ε	Е	D	F
D	D	F	Ε
F	F	Ε	D

	Ε	D	F
Ε	Е	D	F
D	D	F	Ε
F	F	Ε	D

2 D crystal example

2 D crystal example

An element g_i of a group is said to be conjugate to another element g_j if a third x element exists so that:

 $g_j = x g_i x^{-1}$

The set of conjugates is called class. Each element belongs to one class and one only and the identity element is a class by itself. C_{3v} consists of three classes:

Point groups

Point Group	Essential Symmetry Elements
C_{I}	Identity only
C_s	One Symmetry plane
C_i	A centre of symmetry
C_n	One n-fold axis of symmetry
D_n	One C_n axis plus n C_2 axis perpendicular to it
C_{nv}	One C_n axis plus n vertical planes σ_v
C_{nh}	One C_n axis plus a horizontal plane σ_h
D_{nh}	Those of D_n plus a horizontal plane σ_h
D_{nd}	Those of D_n n dihedral planes σ_d
$S_n(n even)$	One n-fold alternating axis of symmetry
T_d	Those of a regular tedrahedron
O_h	Those of a regular octahedron of cube
I_h	Those of a regular icosahedron
H_h	Those of a sphere

Symmetry operations in a cube (O_h group)

S y m m e t r yoperations of the cube (O_h group)

Class	Symmetry operation	Coordinate transformation	Class	Symmetry operation	Coordinate transformation
E	E	хуz	Ι	Ι	-x -y -z
C4 ²	$\begin{array}{c} \delta_{2x} \\ \delta_{2y} \\ \delta_{2z} \end{array}$	-x -y z x -y -z -x y -z	IC ₄ ²	$I\delta_{2x} \\ I\delta_{2y} \\ I\delta_{2z}$	x y -z -x y z x -y z
C4	$\begin{array}{c} \delta^{-1}{}_{4z} \\ \delta_{4z} \\ \delta^{-1}{}_{4x} \\ \delta_{4x} \\ \delta^{-1}{}_{4y} \\ \delta_{4y} \end{array}$	-y x z y -x z x -z y x z -y z y -x -z y x	IC ₄	$\begin{split} & I\delta^{-1}{}_{4z} \\ & I\delta_{4z} \\ & I\delta^{-1}{}_{4x} \\ & I\delta_{4x} \\ & I\delta^{-1}{}_{4y} \\ & I\delta_{4y} \end{split}$	y - x - z $-y x - z$ $-x z - y$ $-x - z y$ $-z - y x$ $z - y - x$
C ₂	$\begin{array}{c} \delta_{2xy} \\ \delta_{2xz} \\ \delta_{2yz} \\ \delta_{2x-y} \\ \delta_{2x-y} \\ \delta_{2-xz} \\ \delta_{2y-z} \end{array}$	y x -z $z -y x$ $-x z y$ $-y -x -z$ $-z -y -x$ $-x -z -y$	IC ₂	$I\delta_{2xy}$ $I\delta_{2xz}$ $I\delta_{2yz}$ $I\delta_{2x-y}$ $I\delta_{2-xz}$ $I\delta_{2y-z}$	-y -x z -z y -x x -z -y y x z z y x x z y
C ₃	$\begin{array}{c} \delta^{-1}_{3xyz} \\ \delta_{3xyz} \\ \delta^{-1}_{3x-yz} \\ \delta_{3x-yz} \\ \delta^{-1}_{3x-y-z} \\ \delta_{3x-y-z} \\ \delta^{-1}_{3xy-z} \\ \delta^{-1}_{3xy-z} \\ \delta_{3xy-z} \end{array}$	z x y y z x z -x -y -y -z x -z -x y -y z -x -z x -y y -z -x	IC ₃	$I\delta^{-1}_{3xyz} \\ I\delta_{3xyz} \\ I\delta^{-1}_{3x-yz} \\ I\delta_{3x-yz} \\ I\delta^{-1}_{3x-y-z} \\ I\delta_{3x-y-z} \\ I\delta^{-1}_{3xy-z} \\ I\delta^{-1}_{3xy-z} \\ I\delta_{3xy-z} \\ I\delta_{3xy-z}$	-z -x -y -y -z -x -z x y y z -x z x -y y -z x z -x y -y z x

Representations

A representation is a collection of square non singular matrices associated with the elements of the group and which obey the group multiplication table

Representations

A representation is a collection of square non singular matrices associated with the elements of the group and which obey the group multiplication table

For the group C_{3v}

	E	A	B	С	D	F
Ε	E	Α	В	С	D	F
A	A	Е	D	F	В	С
В	В	F	Ε	D	С	Α
С	С	D	F	Ε	Α	В
D	D	С	Α	В	F	Ε
F	F	В	С	Α	Ε	D

the totally symmetric (unit) representation

$$\Gamma^{(1)}(E) = \Gamma^{(1)}(A) = \Gamma^{(1)}(B) = \Gamma^{(1)}(C) = \Gamma^{(1)}(D) = \Gamma^{(1)}(F) = 1$$

another Id representation:

$$\Gamma^{(2)}(E) = 1$$

$$\Gamma^{(2)}(A) = \Gamma^{(2)}(B) = \Gamma^{(2)}(C) = -1$$

$$\Gamma^{(2)}(D) = \Gamma^{(2)}(F) = 1$$

a 2 d representation

$$\Gamma^{(3)}(E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Gamma^{(3)}(A) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Gamma^{(3)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \Gamma^{(3)}(C) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

$$\Gamma^{(3)}(D) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \qquad \Gamma^{(3)}(F) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

a 3d representation

$$\Gamma^{(4)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(4)}(A) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(4)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(4)}(C) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(4)}(D) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(4)}(F) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

another 3d representation

$$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} & \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{array} & \Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{array} & \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \end{array}$$

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

This 3d representation derives from the permutations of the vertexes associated with the symmetry operations. σ_a (A) exchanges 2 with 3 C_3 (D) puts atom 2 in 1, 1 in 3

and 3 in 2...

$$\Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Representations														
of the group C _{3v}	1	0 0	0 0	0)				(-1	0	0	0	0 0		
a 6d	0	1 0	0 0	0				0	1	0	0	0 0		
representation $\Gamma^{(6)}(E) =$	0	0 1	0 0	0			$\Gamma^{(6)}(A) =$	0	0	-1	0	0 0		
Γ Γ $(L) -$	0	0 0	1 0	0			1 (71)-	0	0	0	1	0 0		
	0	0 0	0 1	0				0	0	0	0	1 0		
	0	0 0	0 0	1)				$\left(\begin{array}{c} 0 \end{array} \right)$	0	0	0	0 1)	
	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	0	0	0	0)		$\left(\begin{array}{c} \frac{1}{2} \end{array}\right)$	$\frac{\sqrt{3}}{2}$	0	0	0	0)
	$-\frac{\sqrt{3}}{2}$		0	0	0	0		$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	0	0	0	
(6)	0	0	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$		0	(6)	$\begin{vmatrix} 2\\0 \end{vmatrix}$	0	<u>1</u>	$\frac{\sqrt{3}}{2}$	0	0	
$\Gamma^{(6)}(B) =$		0	2 $\sqrt{3}$				$\Gamma^{(6)}(C) =$		0	$\frac{1}{2}$ $\frac{\sqrt{3}}{\sqrt{3}}$	2 1	· 0	0	
	0 0	0	$-\frac{1}{2}$	$-\frac{1}{2}$ 0		0		000	0	$\frac{1}{2}$	$-\frac{1}{2}$	1	0	
	0	0								0	0	1	0	ļ
	$\langle \rangle$		0	0	0	1)			0			0	1)	'
	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	0	0	0 0			$\left(-\frac{1}{2} \right)$		$\frac{\sqrt{3}}{2}$	0	0	0	0
	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	0	0 0			$-\frac{\sqrt{3}}{2}$		$\frac{1}{2}$	0	0	0	0
$\Gamma^{(6)}(D) =$	0	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	0 0		$\Gamma^{(6)}(F) =$	0	()	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	0	0
$\mathbf{I} (\mathcal{D}) =$	0	0	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0 0		I (I)	0	() -	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	0
	0	0	0	0	1 0			0	()	0	0	1	0
	0	0	0	0	0 1)		0	()	0	0	0	1

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

A representation is *reducible* if its matrices are in a block form:

$$\Gamma(R) = \begin{pmatrix} \Gamma^{(1)}(R) & 0 \\ 0 & \Gamma^{(2)}(R) \end{pmatrix}$$

the representation is said to be reducible into $\Gamma^{(1)}$ to $\Gamma^{(n)}$:

$$\Gamma = \Gamma^{(1)} \oplus \Gamma^{(2)}$$

$$\Gamma^{(6)}(B) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$
representations. We can write:

The $\Gamma^{(6)}$ matrices have a "block" form:

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$
representations. We can write:

 $\Gamma^{(6)}(B) = 2\Gamma^{(3)}(B) \oplus 2\Gamma^{(1)}(B)$

The $\Gamma^{(6)}$ matrices have a "block" form:

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$
representations. We can write:

 $\Gamma^{(6)}(B) = 2\Gamma^{(3)}(B) \oplus 2\Gamma^{(1)}(B)$

And in general:

$$\Gamma^{(6)}(B) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$
representations. We can write:
$$\Gamma^{(6)}(B) = 2\Gamma^{(3)}(B) \oplus 2\Gamma^{(1)}(B)$$

And in general:
$$\Gamma^{(6)} = 2\Gamma^{(3)} \oplus 2\Gamma^{(1)}$$

Two representations connected by a similarity transformation:

$$\Gamma^{(j)} = S^{-1} \Gamma^{(i)} S$$

in which S is a non-singular matrix, are **equivalent**

For finite groups, any representation is equivalent to a *unitary* representation (i.e. composed of matrices for which:

$$\det(\Gamma(R)) = 1$$

For example the $\Gamma^{(5)}$ representation of the group C_{3v} :

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Is equivalent to a representation in block form which can be obtained by a similarity transformation with the matrix

$$S = \begin{pmatrix} 0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\ -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \end{pmatrix}$$

$$\Gamma^{(5')}(C) = S^{-1}\Gamma^{(5)}(C)S =$$

$$= \begin{pmatrix} 0 & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}} \\ -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\ -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \end{pmatrix} =$$

 $= \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

The character of a representation matrix is its trace (sum of its diagonal elements):

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

The character of a representation matrix is its trace (sum of its diagonal elements):

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

The traces of matrices connected by a similarity transformation are equal. Therefore:

The character of a representation matrix is its trace (sum of its diagonal elements):

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

The traces of matrices connected by a similarity transformation are equal. Therefore:

a) elements of a group belonging to same *class* have the same *character* in any representation

The character of a representation matrix is its trace (sum of its diagonal elements):

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

The traces of matrices connected by a similarity transformation are equal. Therefore:

a) elements of a group belonging to same *class* have the same *character* in any representation
b) *equivalent* representations have the the same set of characters

From the definition:

 $\chi^{(j)}(R) = \sum \Gamma^{(j)}_{\alpha\alpha}(R)$ α

From the definition:

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

and the invariance under similarity transformation it follows that if

 $\Gamma^{(c)} = \Gamma^{(a)} \oplus \Gamma^{(b)}$

From the definition:

$$\chi^{(j)}(R) = \sum_{\alpha} \Gamma^{(j)}_{\alpha\alpha}(R)$$

and the invariance under similarity transformation it follows that if

$$\Gamma^{(c)} = \Gamma^{(a)} \oplus \Gamma^{(b)}$$

then

$$\chi^{(c)}(R) = \chi^{(a)}(R) + \chi^{(b)}(R)$$

The number of inequivalent irreducible representations of a group is equal to the number of classes. Their dimensions are restricted by:

$$\sum_{i} l_i^2 = h$$

where h is the order of the group

$$\sum_{i} l_i^2 = h$$

For the C_{3v} group, the order h of the group is 6 and there are 3 classes. There are therefore 3 irreducible representations

$$6 = \sum_{i} l_i^2 = 1^2 + 1^2 + 2^2$$

two of which are unidimensional and one is bidimensional

Schur's Lemma: Any matrix which commute with all the matrices of an irreducible representation must be a constant matrix $c\delta ij$

Orthogonality theorem: The non equivalent irreducible, unitary representations satisfy:

$$\sum_{R} \left(\Gamma_{\mu\nu}^{(i)}(R) \right)^* \left(\Gamma_{\alpha\beta}^{(j)}(R) \right) = \frac{h}{l_i} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

$$\sum_{R} \left(\Gamma_{\mu\nu}^{(i)}(R) \right)^* \left(\Gamma_{\alpha\beta}^{(j)}(R) \right) = \frac{h}{l_i} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

By applying the orthogonality theorem to the diagonal elements

$$\sum_{R} \left(\Gamma_{\mu\mu}^{(i)}(R) \right)^* \left(\Gamma_{\alpha\alpha}^{(j)}(R) \right) = \frac{h}{l_i} \delta_{ij} \delta_{\mu\alpha}$$

we sum over μ and α :

$$\sum_{R} \left(\sum_{\mu} \Gamma_{\mu\mu}^{(i)}(R)^{*} \right) \left(\sum_{\alpha} \Gamma_{\alpha\alpha}^{(j)}(R) \right) = \sum_{R} \chi^{(i)}(R)^{*} \chi^{(j)}(R)$$
$$= \sum_{\mu=1}^{l_{i}} \sum_{\alpha=1}^{l_{j}} \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} = \frac{h}{l_{i}} \delta_{ij} \sum_{\mu=1}^{l_{i}} \sum_{\alpha=1}^{l_{j}} \delta_{\mu\alpha}$$

So we get the orthogonality relation for the characters of irreducible representations:

$$\sum_{R} \chi^{(i)}(R)^* \chi^{(j)}(R) = h \delta_{ij}$$

which implies that the characters χ^{red} of a <u>reducible</u> representation Γ^{red} , can be expressed in the form

$$\chi^{red}(R) = \sum_{j} a_{j} \chi^{(j)}(R)$$

in which:

$$a_i = \frac{1}{h} \sum_R \chi^{(i)}(R)^* \chi(R)$$

The orthogonality relation for the characters of irreducible representations allows us to calculate the *character tables*. For C_{3v} we get:

	E	Α	B	С	D	F	6, elements 3 classes
$\Gamma^{(1)}$	1	1	1	1	1	1	
Г (2)	1	-1	-1	-1	1	1	
Г (3)	2	0	0	0	-1	-1	
3 irreducible representations							•

Decomposition of the $\Gamma^{(5)}$ representation of the group C_{3v} using the character properties.

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Decomposition of the $\Gamma^{(5)}$ representation of the group C_{3v} using the character properties.

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

The characters are: $\chi^{(5)}(E) = 3$, $\chi^{(5)}(A) = \chi^{(5)}(B) = \chi^{(5)}(C) = 1$, $\chi^{(5)}(D) = \chi^{(5)}(F) = 0$

Decomposition of the $\Gamma^{(5)}$ representation of the group C_{3v} using the character properties.

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

The characters are: $\chi^{(5)}(E) = 3$, $\chi^{(5)}(A) = \chi^{(5)}(B) = \chi^{(5)}(C) = 1$, $\chi^{(5)}(D) = \chi^{(5)}(F) = 0$

Therefore:
$$a_1 = \frac{1}{6}(3 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 0 \times 1 + 0 \times 1) = 1$$

 $a_2 = \frac{1}{6}(3 \times 1 + 1 \times (-1) + 1 \times (-1) + 1 \times (-1) + 0 \times 1 + 0 \times 1) = 0$
 $a_3 = \frac{1}{6}(3 \times 2 + 1 \times 0 + 1 \times 0 + 1 \times 0 + 0 \times 1 + 0 \times 1) = 1$

Irreducible Representations

Decomposition of the $\Gamma^{(5)}$ representation of the group C_{3v} using the character properties.

$$\Gamma^{(5)}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma^{(5)}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(B) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Gamma^{(5)}(C) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(D) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Gamma^{(5)}(F) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

The characters are: $\chi^{(5)}(E) = 3$, $\chi^{(5)}(A) = \chi^{(5)}(B) = \chi^{(5)}(C) = 1$, $\chi^{(5)}(D) = \chi^{(5)}(F) = 0$

Therefore:

$$a_{1} = \frac{1}{6} (3 \times 1 + 1 \times 1 + 1 \times 1 + 1 \times 1 + 0 \times 1 + 0 \times 1) = 1$$

$$a_{2} = \frac{1}{6} (3 \times 1 + 1 \times (-1) + 1 \times (-1) + 1 \times (-1) + 0 \times 1 + 0 \times 1) = 0$$

$$a_{3} = \frac{1}{6} (3 \times 2 + 1 \times 0 + 1 \times 0 + 1 \times 0 + 0 \times 1 + 0 \times 1) = 1$$
i.e.:

$$\Gamma^{(5)} = \Gamma^{(1)} \bigoplus \Gamma^{(3)}$$

Basis Functions

We can define sets of linearly independent functions ϕ whose transformations under the symmetry operations of the group P_r are given by:

$$P_{R}\varphi_{k}^{(j)}(\vec{r}) = \sum_{\lambda=1}^{n}\varphi_{\lambda}^{(j)}(\vec{r})\Gamma_{\lambda k}^{(j)}(R)$$

i.e. the transformation of the basis set of the representation Γ^{j} under the symmetry operation R is described by the matrix Γ^{j} (R).

The ϕ functions are said to constitute a set of basis functions for the group

Basis Functions

We constructed Γ^3 in the group $C_{3\nu}$ by considering the coordinate transformation. Therefore the functions

$$\varphi_1^{(3)}(\vec{r}) = x$$
$$\varphi_2^{(3)}(\vec{r}) = y$$

form a basis for the Γ^3 representation of the group.

The function:

$$\varphi_1^{(1)}(\vec{r}) = z$$

remains unchanged under any operation of the group and therefore constitute a basis for the Γ^{1} representation, as well as

$$\varphi_1^{(1)'}(\vec{r}) = z^2$$

and

$$\rho_1^{(1)"}(\vec{r}) = x^2 + y^2$$

Wednesday, July 10, 2013

Basis Functions

By stopping to second order functions (d orbitals!) we get for C_{3v} we can write:

	E	$3\sigma_v$	2C ₃		
$\Gamma^{(1)}$	1	1	1	Z	$x^2 + y^2; z^2$
$\Gamma^{(2)}$	1	-1	1	R_z	
Г (3)	2	0	-1	$(x,y);(R_x,R_y)$	$(x^2-y^2,xy);(xz.yz)$

Product Representations

The direct product of two matrices is defined as:

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{pmatrix} A_{11}\mathbf{B} & A_{12}\mathbf{B} & \dots \\ A_{21}\mathbf{B} & A_{22}\mathbf{B} & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

or

$$C_{ik,jl} = A_{ij}B_{kl}$$

The characters are related by:

 $\chi(A \times B) = \chi(A)\chi(B)$

Product Representations

If $\Gamma^{(\mu)}$ and $\Gamma^{(\nu)}$ are two representations of a group, the matrices

$$\Gamma^{(\mu \times \nu)}(R) = \Gamma^{(\mu)}(R) \times \Gamma^{(\nu)}(R)$$

constitute a representation $\Gamma^{(\mu \times \nu)}$ called product representation

The number of times the irreducible representation $\Gamma^{(\alpha)}$ appears in the product representation is given by:

$$a_{\alpha\mu\nu} = \frac{1}{h} \sum_{R} \chi^{(\alpha)}(R)^* \chi^{(\mu)}(R) \chi^{(\nu)}(R)$$

and in particular for $\alpha = I$:

$$a_{1\mu\nu} = \delta_{\mu\nu}$$

As a consequence of the orthogonality theorem we have that:

$$\sum_{R} \Gamma^{(j)}_{\alpha\beta}(R) = 0$$

for any representation other then the unit representation.

If $\Psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ we have

$$\int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \int P_R \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \sum_{\alpha} \Gamma_{\alpha\mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d\vec{r}$$

by summing over all elements of the group we get

$$\sum_{R} \int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \sum_{\alpha} \sum_{R} \Gamma_{\alpha\mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d\vec{r}$$

 $\sum_{R} \Gamma^{(j)}_{\alpha\beta}(R) = 0$

As a consequence of the orthogonality theorem we have that:

for any representation other then the unit representation.

If $\Psi^{(j)}_{\mu}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ we have

$$\int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \int P_R \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \sum_{\alpha} \Gamma_{\alpha\mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d\vec{r}$$

by summing over all elements of the group we get

$$\sum_{R} \int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = \sum_{\alpha} \sum_{R} \Gamma_{\alpha\mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d\vec{r} = \mathbf{0}$$

So, if $\Psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ and $\Gamma^{(j)}$ is **not** the unit representation we have:

$$\int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = 0$$

For a symmetric system, the $\psi,\ Q$ and ϕ functions in the matrix element

$$M = \left\langle \psi_{\alpha}^{(i)} \left| Q_{\beta}^{(j)} \right| \varphi_{\gamma}^{(k)} \right\rangle = \int \psi_{\alpha}^{(i)} (\vec{r})^* Q_{\beta}^{(j)} (\vec{r}) \varphi_{\gamma}^{(k)} (\vec{r}) d\vec{r}$$

transform according to the irreducible representations $\Gamma^{(i)}$, $\Gamma^{(j)}$ and $\Gamma^{(k)}$ respectively. Therefore the integrand belong to the product representation:

$$\Gamma^{(i)*} \times \Gamma^{(j)} \times \Gamma^{(k)} = \sum_{\mu} a_{\mu} \Gamma^{(\mu)}$$

So, if $\Psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ and $\Gamma^{(j)}$ is **not** the unit representation we have:

$$\int \psi_{\mu}^{(j)}(\vec{r}) d\vec{r} = 0$$

For a symmetric system, the $\psi,\ Q$ and ϕ functions in the matrix element

$$M = \left\langle \psi_{\alpha}^{(i)} \left| Q_{\beta}^{(j)} \right| \varphi_{\gamma}^{(k)} \right\rangle = \int \psi_{\alpha}^{(i)} (\vec{r})^* Q_{\beta}^{(j)} (\vec{r}) \varphi_{\gamma}^{(k)} (\vec{r}) d\vec{r}$$

transform according to the irreducible representations $\Gamma^{(i)}$, $\Gamma^{(j)}$ and $\Gamma^{(k)}$ respectively. Therefore the integrand belong to the product representation:

$$\Gamma^{(i)*} \times \Gamma^{(j)} \times \Gamma^{(k)} = \sum_{\mu} a_{\mu} \Gamma^{(\mu)}$$

The matrix element is ≠0 only if the product representation of the integrand contains the unit representation

Wednesday, July 10, 2013

Matrix Elements Optical Selection Rules $\mu(\hbar\omega) = \frac{4\pi^2 e^2}{nm^2 c\omega} \sum_{if} |\langle f | \hat{e} \cdot \vec{p} | i \rangle|^2 \delta(E_f - E_i - \hbar\omega)$

Matrix Elements Optical Selection Rules $\mu(\hbar\omega) = \frac{4\pi^2 e^2}{nm^2 c\omega} \sum_{if} |\langle f[\hat{e} \cdot \vec{p}]i \rangle|^2 \delta(E_f - E_i - \hbar\omega)$ this determines the symmetry of the em field

Matrix Elements Optical Selection Rules

Matrix Elements Optical Selection Rules

$$\mu(\hbar\omega) = \frac{4\pi^2 e^2}{nm^2 c\omega} \sum_{if} \left| \langle f | \hat{e} \cdot \vec{p} | i \rangle \right|^2 \delta(E_f - E_i - \hbar\omega)$$

C_{3v}	E	$3\sigma_v$	2C ₃		
$\Gamma^{(1)}$	1	1	1	Z	$x^2 + y^2; z^2$
$\Gamma^{(2)}$	1	-1	1	R_z	
Γ (3)	2	0	-1	$(x,y);(R_x,R_y)$	$(x^2-y^2,xy);(xz.yz)$

An em field polarized along z belongs to the $\Gamma^{(1)}$ representation

	E	2C3	$3C_2$
$\Gamma^{(1)}$	1	1	1
<u>[</u> (2)	1	1	-1
$\Gamma^{(3)}$	2	-1	0

	E	2 <i>C</i> 3	$3C_2$	Allowed?
$<\Gamma^{(1)} \Gamma^{(1)} \Gamma^{(1)} >$	1	1	1	YES
$<\Gamma^{(1)} \Gamma^{(1)} \Gamma^{(2)}>$	1	1	-1	NO
$<\Gamma^{(2)} \Gamma^{(1)} \Gamma^{(2)}>$	1	1	1	YES
$<\Gamma^{(1)} \Gamma^{(1)} \Gamma^{(3)}>$	2	-1	0	NO
$<\Gamma^{(2)} \Gamma^{(1)} \Gamma^{(3)}>$	2	-1	0	NO
$<\Gamma^{(3)} \Gamma^{(1)} \Gamma^{(3)}>$	4	1	0	YES

An em field polarized along z belongs to the $\Gamma^{(1)}$ representation

Wednesday, July 10, 2013

Matrix Elements Optical Selection Rules

C_{3v}	E	$3\sigma_v$	2C ₃		
$\Gamma^{(1)}$	1	1	1	Z	$x^2 + y^2; z^2$
$\Gamma^{(2)}$	1	-1	1	R_z	
Г (3)	2	0	-1	$(x,y);(R_x,R_y)$	$(x^2-y^2,xy);(xz.yz)$

Note that e.m. field polarized in the xy plane would belong to the $\Gamma^{(3)}$ representation and, because of the C₃ symmetry the direction within the plane is **irrelevant**!

This is true for all cases in which there is a C_n symmetry axis obviously for n>2

Matrix Elements Optical Selection Rules

For the C_{2v} symmetry (e.g. the water molecule), the x, y and z directions are non equivalent

C_{2v}	E	$\sigma_v(xz)$	$\sigma_v(yz)$	C ₂		
A_1	1	1	1	1	Z	$x^2;y^2;z^2$
A_2	1	-1	-1	1	R_z	xy
B ₁	1	1	-1	-1	$x;R_y$	xz
B ₂	1	-1	1	-1	<i>y;R</i> _x	yz.

Water

- Consider how the following orbitals behave when subjected to the symmetry operations of the point group C_{2v}
 - O 2s, O $2p_x 2p_z$ and $2p_y$
 - H1s + H2s and H1s H2s

Symmetry elements for H_2O

Transformation of H_{1s} orbitals in H_2O

We can classify the combinations 1s(A) + 1s(B) and 1s(A) - 1s(B) by how they transform when the symmetry operations of the point group for the molecule (C_{2v}) are applied

Figure 3.2 The transformations of the H-H bonding orbital of H_2 under the symmetry operations of the C_2 , point group.

Figure 3.3 The transformations of the H-H antibonding orbital of H₂ under the symmetry operations of the C_{2*} point group. The point of interest is a comparison of the phases of this orbital 'before' (left) and 'after'.

Transformation of O_{pz} orbital in H_2O

Figure 2.12 The effects of the symmetry operations of the C_{2*} point group on the oxygen 2p, orbital in the water molecule. The point of importance is the relative phases of the orbital 'before' (left) and 'after' (right).

Transformation of the other O orbitals in H_2O

Figure 2.10 The effects of the symmetry operations of the C_{2*} point group on the oxygen 2p, orbital in the water molecule. The point of importance is the relative phases of the orbital 'before' (left) and 'after' (right).

Figure 2.8 The effects of the symmetry operations of the $C_{2\nu}$ point group on the oxygen 2p, orbital in the water molecule. The point of importance is the relative phases of the orbital 'before' (left) and 'after' (right).

MO diagram for H₂O

Figure 3.11 A schematic molecular orbital energy level diagram for H_2O .

SALCS for NH₃

Transforms as A₁

4.17 The combination $\phi_1 = \phi_A + \phi_B + \phi_C$ of the three H1s orbitals in the C_{3v} molecule NH₃ remains unchanged under a C_3 rotation and under any of the vertical reflections.

4.15 The combination of H1s orbitals that are used to form e orbitals in NH₃. They overlap the p_x and p_y orbitals on the N atom.

Transform as E

SALCS for NH₃

Transforms as A₁

4.17 The combination $\phi_1 = \phi_A + \phi_B + \phi_C$ of the three H1s orbitals in the C_{3v} molecule NH₃ remains unchanged under a C_3 rotation and under any of the vertical reflections.

4.15 The combination of H1s orbitals that are used to form e orbitals in NH₃. They overlap the p_x and p_y orbitals on the N atom.

Transform as E

Symmetry of N orbitals in NH₃

- The N 2p_z orbital and the N 2s orbital transform as A₁ in the point group C_{3v}
- N 2p_x and 2p_y
 transform as E

4.20 An N2p_x orbital in NH₃ changes sign under a σ_v reflection but an N2p_y orbital is let unchanged. Hence the degenerate pair jointly has character 0 for this operation. The plan of the paper is the xy-plane.

C _{3v} (3m) A ₁	E	2 <i>C</i> ₃	$3\sigma_v$	h =	6
	1	1	1	z	$x^2 + y^2, z^2$.
A ₂	1	1	- 1	R,	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, xy)(xz, yz)$

Examples of vibrational selection rules

C₂, (2mm)	E	<i>C</i> ₂	σ . (Χ	z) σ',(yz)	h = 4		
Α,	1	1	1	1	z	x²,	y^2, z^2	-
				- 1				
в,	1	-1	1	-1	х,	R _y xz		
B₂	1	- 1	- 1	1	у.	R _x yz		_
C _{3v} (3 <i>m</i>)	E	2 <i>C</i> 3	3 σ.		h = (6		
Α,	1	1	1	z		$x^2 + y^2$	z²	
A ₂		1						
E	2	- 1	0	(x, y)(h	i, R,)	$(x^2 - y^2)$	², xy)(xz, yz)
C ₄ , (4mm)	E	2 <i>C</i> 4	C ₂	2 σ,	2 σ _d		h=	-
А,	1	1	1	1	1 <i>z</i>			$x^2 + y^2$,
A ₂	1	1	1	- 1	-1 F	7,		
Ð	1	- 1	1	1	- 1			$x^2 - y^2$
в,				4	4			xy
В, В ₂	1	- 1	1		1	x, y)(R _x ,	_	(xz, yz)

A₁, B₁ and B₂ symmetry vibrations will be IR active.

A₁, A₂, B₁ and B₂ symmetry vibrations will be Raman active.

A₁ and E symmetry vibrations will be IR active.

A₁, and E symmetry vibrations will be Raman active.

A₁, and E symmetry vibrations will be IR active.

A₁, B₁, B₂ and E symmetry vibrations will be Raman active.

Symmetry operations in a cube (O_h group)

Character Table and Bases for the Cubic Group Oh

Repr.	Basis	Е	3C ₄ ²	6C ₄	6C ₂	8C ₃	i	3iC ₄	6iC ₄	6iC ₂	8iC3
Γ ₁	1	1	1	1	1	1	1	1	1	1	1
Г ₂	$x^{4}(y^{2} - z^{2}) +$ $y^{4}(z^{2} - x^{2}) +$ $z^{4}(x^{2} - y^{2})$	1	1	-1	-1	1	1	1	-1	-1	1
Γ ₁₂	$x^2 - y^2$ $2z^2 - x^2 - y^2$	2	2	0	0	-1	2	2	0	0	-1
Γ ₁₅	$xy(x^{2} - y^{2})$ $yz(y^{2} - z^{2})$ $zx(z^{2} - x^{2})$	3	-1	1	-1	0	3	-1	1	-1	0
Γ ₂₅	xy, yz, zx	3	-1	-1	1	0	3	-1	-1	1	0
Г'1	$xyz[x^{4}(y^{2} - z^{2}) + y^{4}(z^{2} - x^{2}) + z^{4}(x^{2} - y^{2})]$	1	1	1	1	1	-1	-1	-1	-1	-1
Γ ₂	XYZ	1	1	-1	-1	1	-1	-1	1	1	-1
Γ ₁₂	$xyz(x^2 - y^2)$ $xyz(2z^2 - x^2 - y^2)$	2	2	0	0	-1	-2	-2	0	0	1
Γ ₁₅	$x, y, z = z(x^2 - y^2)$	3	-1	1	-1	0	-3	1	-1	1	0
Γ ₂₅	$x(y^2 - z^2)$ y(z ² - x ²)	3	-1	-1	1	0	-3	1	1	-1	0

Character Table and Bases for the Cubic Group Oh

Repr.	Basis	E	3C ₄ ²	6C ₄	6C ₂	8C ₃	i	3iC ₄	6iC ₄	6iC ₂	8i C ₃
Γ ₁	1	1	1	1	1	1	1	1	1	1	1
Γ ₂	$x^{4}(y^{2} - z^{2}) +$ $y^{4}(z^{2} - x^{2}) +$ $z^{4}(x^{2} - y^{2})$	1	1	-1	-1	1	1	1	-1	-1	1
Γ ₁₂	$x^{2} - y^{2}$ $2z^{2} - x^{2} - y^{2}$ $xy(x^{2} - y^{2})$	2	2	0	0	-1	2	2	0	0	-1
Γ ₁₅	$xy(x^{2} - y^{2})$ $yz(y^{2} - z^{2})$ $zx(z^{2} - x^{2})$	3	-1	1	-1	0	3	-1	1	-1	0
Γ ₂₅	XY, YZ, ZX	3	-1	-1	1	0	3	-1	-1	1	0
Γ'1	$xyz[x^{4}(y^{2} - z^{2}) + y^{4}(z^{2} - x^{2}) + z^{4}(x^{2} - y^{2})]$	1	1	1	1	1	-1	-1	-1	-1	-1
Γ ₂	xyz	1	1	-1	-1	1	-1	-1	1	1	-1
Γ ₁₂	$xyz(x^2 - y^2)$ $xyz(2z^2 - x^2 - y^2)$	2	2	0	0	-1	-2	-2	0	0	1
Γ ₁₅	x, y, z $z(x^2 - y^2)$	3	-1	1	-1	0	-3	1	-1	1	0
Γ ₂₅	$x(y^2 - z^2)$ $y(z^2 - x^2)$	3	-1	-1	1	0	-3	1	1	-1	0

the em field transforms like Γ_{15}

Wednesday, July 10, 2013

The fcc Brillouin zone

Point/ line	Coordinate	Symmetry
Γ	(0,0,0)	O _h
L	$\pi/a(1,1,1)$	D _{3d}
X	(2π/a,0,0)	D_{4h}
K	<i>3π/a(1,1,0)</i>	C_{2v}
Δ	$(k_x, 0, 0)$	C_{4v}
Δ	k(1,1,1)	C_{3v}
Σ	k(1,1,0)	C_{2v}

PHYSICAL REVIEW B

VOLUME 21, NUMBER 12

15 JUNE 1980

Dipole selection rules for optical transitions in the fcc and bcc lattices

W. Eberhardt

Department of Physics, and Laboratory for Research on the Stucture of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104

F. J. Himpsel

Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, Wisconsin 53589 (Received 10 September 1979)

We present the compilation of dipole selection rules for all high-symmetry points and lines of the fcc and bcc lattices, which can be used for the interpretation of absorption or photoemission data in the one-electron direct-transition picture.

0 h	. ^Г 1	Γ2	Γ ₁₂	Г ₁₅ ,	Г ₂₅ ,	Γ ₁ ,	Г ₂ ′	Г ₁₂ ′	Γ ₁₅	Γ ₂₅
Г1									+	
Γ ₂										+
Γ ₁₂									+	+
Γ ₁₅ ,						+		+	+	+
Γ ₂₅	200.02						+	+	+	+
$\Gamma_{1'}^{25}$				+						
Γ ₂ '					+					
Γ ₁₂ ,			· · ·	+	+					
Γ ₁₅	+		+	+	+					
Γ25		+	+	+	+					

TABLE III. Allowed dipole transitions at Δ . (+) is for \vec{A} parallel Δ ; $\vec{A} \cdot \vec{p}$ is represented by Δ_1 . (0) is for \vec{A} normal Δ ; $\vec{A} \cdot \vec{p}$ is represented by Δ_5 .

C40	Δ_1	Δ ₁ ,	Δ_2	Δ ₂ ,	Δ_5
Δ1	+				0
Δ,,		+			0
Δ_2			+		0
Δ_2'				+	0
Δ_5^2	0	0	0	0	+

TABLE IV. Allowed dipole transitions at Σ , D, G, K, U, S, and Z. (+) is for \vec{A} parallel Σ ; $\vec{A} \cdot \vec{p}$ is represented by Σ_1 . (0) is for \vec{A} normal Σ , parallel x; $\vec{A} \cdot \vec{p}$ is represented by Σ_3 . (X) is for \vec{A} normal Σ , parallel y; $\vec{A} \cdot \vec{p}$ is represented by Σ_4 .

-				
C ₂₀	Σ_1	Σ2	Σ_3	Σ_4
Σ	+		0	X
Σ2		+	X	0
Σ3	0	X	+	
Σ4	X	0		+

TABLE VII. Allowed dipole transitions at X. (+) is for \vec{A} parallel Δ ; $\vec{A} \cdot \vec{p}$ is represented by $X_{4'}$. (0) is for \vec{A} normal Δ ; $\vec{A} \cdot \vec{p}$ is represented by $X_{5'}$.

D _{4h}	<i>X</i> ₁	X 2	X 3	X ₄	X 1'	X 2'	X _{3'}	X 4'	X 5	X ₅ ,
<i>x</i> ₁								+		0
X_2							+			0
X_3						+				0
X ₄					+					0
$X_{1'}$				+					0	
$x'_{2'}$			+					• • •	0	
$x_{3'}^{2}$		+							0	
$x_{4'}^{3}$	+								0	
X 5					0	0	0	0		+
$X_{5'}$	0	0	0	0					+	