Introduction to group theory

Symmetry operations of the ammonia molecule

Symmetry operations of the equilateral triangle

Rotation by $2 \pi / 3$ around the center

Rotation by $2 * 2 \pi / 3$ around the center

Reflection about the yz plane

Reflection about the yz plane followed by a rotation by $2 \pi / 3$ around the center

Equivalent to a single reflection operation!

Rotation by $2 \pi / 3$ around the center followed by a reflection by about the yz plane

Equivalent to a different single reflection operation!

Definition of groups

A collection of elements A, B, C, \ldots form a group when
I. The product of any two elements of the group is itself an element of the group. For example, relations of the type $A B=C$ are valid for all members of the group.
2. The associative law is valid - i.e., $(A B) C=A(B C)$.
3. There exists a unit element E (also called the identity element) such that the product of E with any group element leaves that element unchanged $\mathrm{AE}=\mathrm{EA}=\mathrm{A}$.
4. For every element there exists an inverse, $A^{-1} A=A A^{-1}=E$.

The 6 symmetry operations of the equilateral triangle:

The 6 symmetry operations of the equilateral triangle:
E) The identity operation ("do nothing")
A)Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by $2 \pi / 3$ around O
F) Rotation by $4 \pi / 3$ (or $-2 \pi / 3$) around

The 6 symmetry operations of the equilateral triangle:
E) The identity operation ("do nothing")
A)Mirroring about a
B) Mirroring about b
C) Mirroring about c
D) Rotation by $2 \pi / 3$ around O
F) Rotation by $4 \pi / 3$ (or $-2 \pi / 3$) around

Form a group ($\mathrm{C}_{3 \mathrm{v}}$)

E) The identity operation ("do nothing")
A)Mirroring about a
B)Mirroring about b
C) Mirroring about C
D) Rotation by $2 \pi / 3$ around O
F) Rotation by $4 \pi / 3$ (or $-2 \pi / 3$) around O

E) The identity operation ("do nothing")
A)Mirroring about a
B)Mirroring about b
C) Mirroring about c
D) Rotation by $2 \pi / 3$ around O
F) Rotation by $4 \pi / 3$ (or $-2 \pi / 3$) around O

We can set up a multiplication table for the group $\mathrm{C}_{3 v}$:

	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

Subgroups

	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

Subgroups

	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

Subgroups

	E	A	B	C	D	F				
E	E	A	B	C	D	F				
A	A	E	D	F	B	C		E	B	
B	B	F	E	D	C	A	E	E	B	
C	C	D	F	E	A	B	B	B	E	E
D	D	C	A	B	F	E				
F	F	B	C	A	E	D				

Subgroups

	E	A	B	C	D	F			
E	E	A	B	C	D	F			
A	A	E	D	F	B	C		E	C
B	B	F	E	D	C	A	E	E	C
C	C	D	F	E	A	B	C	C	E
D	D	C	A	B	F	E			
F	F	B	C	A	E	D			

Subgroups

	E	A	B	C	D		F					
E	E	A	B	C	D		F					
A	A	E	D	F	B		c	E	E	D	F	
B	B	F	E	D	C		A	D	D	F	E	
C	C	D	F	E	A		B	F	F	E	D	
D	D	C	A	B	F		E					
F	F	B	C	A	E							

Subgroups

	E	D	F
E	E	D	F
D	D	F	E
F	F	E	D

Subgroups

	E	D	F
E	E	D	F
D	D	F	E
F	F	E	D

Subgroups

	E	D	F
E	E	D	F
D	D	F	E
F	F	E	D

Subgroups

2 D crystal example

2 D crystal example

An element g_{i} of a group is said to be conjugate to another element g_{j} if a third x element exists so that:

$$
g_{j}=x g_{i x} x^{-1}
$$

The set of conjugates is called class. Each element belongs to one class and one only and the identity element is a class by itself. $\mathrm{C}_{3 v}$ consists of three classes:

$$
C_{1}=E ; C_{2}=A, B, C ; C_{3}=D, F
$$

Point groups

Point Group	Essential Symmetry Elements
C_{l}	Identity only
C_{s}	One Symmetry plane
C_{i}	A centre of symmetry
C_{n}	One n-fold axis of symmetry
D_{n}	One C_{n} axis plus $\mathrm{n} \mathrm{C}_{2}$ axis perpendicular to it
$C_{n v}$	${\text { One } C_{\mathrm{n}} \text { axis plus } \mathrm{n} \text { vertical planes } \sigma_{\mathrm{v}}}^{\|c\|}$One C_{n} axis plus a horizontal plane σ_{h} $C_{n h}$ Those of D_{n} plus a horizontal plane σ_{h}
$D_{n h}$	Those of $\mathrm{D}_{\mathrm{n}} \mathrm{n}$ dihedral planes σ_{d}
$D_{n d}$	One n-fold alternating axis of symmetry
$S_{n}(n$ even $)$	Those of a regular tedrahedron
T_{d}	Those of a regular octahedron of cube
O_{h}	Those of a regular icosahedron
I_{h}	Those of a sphere
H_{h}	

Symmetry operations in a cube (O_{h} group)

Symmetry operations of the cube (O_{h} group)

Class	Symmetry operation	Coordinate transformation	Class	Symmetry operation	Coordinate transformation
E	E	x y z	I	I	-x -y -z
$\mathrm{C}_{4}{ }^{2}$	$\begin{aligned} & \delta_{2 x} \\ & \delta_{2 y} \\ & \delta_{2 z} \end{aligned}$	$\begin{array}{lll} -x & -y & z \\ x & -y & -z \\ -x & y & -z \end{array}$	$\mathrm{IC}_{4}{ }^{2}$	$\mathrm{I}_{2 \mathrm{x}}$ $\mathrm{Id}_{2 \mathrm{y}}$ $\mathrm{Id}_{2 \mathrm{z}}$	$\begin{array}{cc} x y & -z \\ -x y & z \\ x-y & z \end{array}$
C_{4}	$\begin{gathered} \delta^{-1} 4 \mathrm{z} \\ \delta_{4 \mathrm{z}} \\ \delta^{-1} 4 \mathrm{x} \\ \delta_{4 \mathrm{x}} \\ \delta^{-1} 4 \mathrm{y} \\ \delta_{4 \mathrm{y}} \end{gathered}$	$\begin{array}{ccc} -y & x & z \\ y & -x & z \\ x & -z & y \\ x & z & -y \\ z & y & -x \\ -z & y & x \end{array}$	IC_{4}	$\begin{gathered} \mathrm{I}^{-1}{ }_{4 \mathrm{z}} \\ \mathrm{I} \delta_{4 \mathrm{z}} \\ \mathrm{I} \delta^{-1} 4 \mathrm{x} \\ \mathrm{I} \delta_{4 \mathrm{x}} \\ \mathrm{I} \delta^{-1} 4 \mathrm{y} \\ \mathrm{I} \delta_{4 y} \end{gathered}$	$\begin{array}{lll} y & -x & -z \\ -y & x & -z \\ -x & z & -y \\ -x & -z & y \\ -z & -y & x \\ z & -y & -x \end{array}$
C_{2}	$\begin{aligned} & \delta_{2 \mathrm{xy}} \\ & \delta_{2 \mathrm{xz}} \\ & \delta_{2 \mathrm{yz}} \\ & \delta_{2 \mathrm{x}-\mathrm{y}} \\ & \delta_{2-\mathrm{xz}} \\ & \delta_{2 \mathrm{y}-\mathrm{z}} \end{aligned}$	$\begin{array}{ccc} y & x & -z \\ z & -y & x \\ -x & z & y \\ -y & -x & -z \\ -z & -y & -x \\ -x & -z & -y \end{array}$	IC_{2}	$\begin{aligned} & \mathrm{I} \delta_{2 x y} \\ & \mathrm{I} \delta_{2 x z} \\ & \mathrm{I} \delta_{2 \mathrm{yz}} \\ & \mathrm{I} \delta_{2 \mathrm{x}-\mathrm{y}} \\ & \mathrm{I} \delta_{2-\mathrm{xz}} \\ & \mathrm{I} \delta_{2 y-z} \end{aligned}$	$\begin{array}{ccc} -y & -x & z \\ -z & y & -x \\ x & -z & -y \\ y & x & z \\ z & y & x \\ x & z & y \end{array}$
C_{3}	$\delta^{-1} 3 x y z$ $\delta_{3 x y z}$ $\delta^{-1} 3 x-y z$ $\delta_{3 x-y z}$ $\delta^{-1} 3 x-y-z$ $\delta_{3 x-y-z}$ $\delta^{-1} 3 x y-z$ $\delta_{3 x y-z}$	$\begin{array}{ccc} z & x & y \\ y & z & x \\ z & -x & -y \\ -y & -z & x \\ -z & -x & y \\ -y & z & -x \\ -z & x & -y \\ y & -z & -x \end{array}$	IC_{3}	$\mathrm{I}^{-1}{ }^{3 x y z}$ IO 3xyz I $\delta^{-1}{ }_{3 x-y z}$ $\mathrm{I}_{3 x-y z}$ I $\delta^{-1} 3 x-y-y$ $\mathrm{I}_{3 x-y-z}$ $\mathrm{I}^{-1}{ }^{3} \mathrm{xy} \mathrm{y}-\mathrm{z}$ $\mathrm{I}_{3 x y-z}$	$\begin{array}{ccc} -z & -x & -y \\ -y & -z & -x \\ -z & x & y \\ y & z & -x \\ z & x & -y \\ y & -z & x \\ z & -x & y \\ -y & z & x \end{array}$

Representations

A representation is a collection of square non singular matrices associated with the elements of the group and which obey the group multiplication table

Representations

A representation is a collection of square non singular matrices associated with the elements of the group and which obey the group multiplication table

For the group $\mathrm{C}_{3 \mathrm{v}}$

	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

Representations of the group $\mathrm{C}_{3 \mathrm{v}}$

the totally symmetric (unit) representation

$$
\Gamma^{(1)}(E)=\Gamma^{(1)}(A)=\Gamma^{(1)}(B)=\Gamma^{(1)}(C)=\Gamma^{(1)}(D)=\Gamma^{(1)}(F)=1
$$

another Id representation:

$$
\begin{aligned}
& \Gamma^{(2)}(E)=1 \\
& \Gamma^{(2)}(A)=\Gamma^{(2)}(B)=\Gamma^{(2)}(C)=-1 \\
& \Gamma^{(2)}(D)=\Gamma^{(2)}(F)=1
\end{aligned}
$$

Representations of the group $\mathrm{C}_{3 \mathrm{v}}$

a 2 d representation

$$
\begin{array}{ll}
\Gamma^{(3)}(E)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \Gamma^{(3)}(A)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\Gamma^{(3)}(B)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) & \Gamma^{(3)}(C)=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \\
\Gamma^{(3)}(D)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) & \Gamma^{(3)}(F)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

Representations of the group $\mathrm{C}_{3 \mathrm{v}}$

a 3d representation

$$
\begin{array}{ll}
\Gamma^{(4)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(4)}(A)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(4)}(B)=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(4)}(C)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(4)}(D)=\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(4)}(F)=\left(\begin{array}{ccc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Representations of the group $\mathrm{C}_{3 \mathrm{v}}$

another 3d representation

$$
\begin{array}{ll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
\Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

Representations of the group $\mathrm{C}_{3 \mathrm{v}}$

This 3d representation derives from the permutations of the vertexes associated with the symmetry operations.
$\sigma_{\mathrm{a}}(\mathrm{A})$ exchanges 2 with 3
$\mathrm{C}_{3}(\mathrm{D})$ puts atom 2 in I, I in 3 and 3 in $2 \ldots$

$$
\Gamma^{(5)}(A)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \Gamma^{(5)}(D)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
$\stackrel{\text { a 6d }}{\text { representation }} \Gamma^{(6)}(E)=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\Gamma^{(6)}(B)=\left(\begin{array}{cccccc}\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\Gamma^{(6)}(A)=\left(\begin{array}{cccccc}-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\Gamma^{(6)}(C)=\left(\begin{array}{cccccc}\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\Gamma^{(6)}(D)=\left(\begin{array}{cccccc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\Gamma^{(6)}(F)=\left(\begin{array}{cccccc}-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cccccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cccccc}
\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Reducible Representations

A representation is reducible if its matrices are in a block form:

$$
\Gamma(R)=\left(\begin{array}{cc}
\Gamma^{(1)}(R) & 0 \\
0 & \Gamma^{(2)}(R)
\end{array}\right)
$$

the representation is said to be reducible into $\Gamma^{(1)}$ to $\Gamma^{(n)}$:

$$
\Gamma=\Gamma^{(1)} \oplus \Gamma^{(2)}
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$ representations. We can write:

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right)
$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$ representations. We can write:

$$
\Gamma^{(6)}(B)=2 \Gamma^{(3)}(B) \oplus 2 \Gamma^{(1)}(B)
$$

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$ representations. We can write:

$$
\Gamma^{(6)}(B)=2 \Gamma^{(3)}(B) \oplus 2 \Gamma^{(1)}(B)
$$

And in general:

Representations of the group $\mathrm{C}_{3 v}$
The $\Gamma^{(6)}$ matrices have a "block" form:

$$
\Gamma^{(6)}(B)=\left(\begin{array}{cc|cccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right)
$$

where each block is a matrix of the $\Gamma^{(3)}$ and $\Gamma^{(1)}$ representations. We can write:

$$
\Gamma^{(6)}(B)=2 \Gamma^{(3)}(B) \oplus 2 \Gamma^{(1)}(B)
$$

And in general:

$$
\Gamma^{(6)}=2 \Gamma^{(3)} \oplus 2 \Gamma^{(1)}
$$

Representations

Two representations connected by a similarity transformation:

$$
\Gamma^{(j)}=S^{-1} \Gamma^{(i)} S
$$

in which S is a non-singular matrix, are equivalent
For finite groups, any representation is equivalent to a unitary representation (i.e. composed of matrices for which:

$$
|\operatorname{det}(\Gamma(R))=1|
$$

Representations

For example the $\Gamma^{(5)}$ representation of the group $C_{3 v}$:

$$
\begin{array}{ll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
\Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

Is equivalent to a representation in block form which can be obtained by a similarity transformation with the matrix

$$
S=\left(\begin{array}{ccc}
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}}
\end{array}\right)
$$

Representations

$$
\begin{gathered}
\Gamma^{\left(5^{\prime}\right)}(C)=S^{-1} \Gamma^{(5)}(C) S= \\
=\left(\begin{array}{cccc}
0 & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}} \\
-\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}}
\end{array}\right)=
\end{gathered}
$$

Representations

$$
\left.\begin{array}{l}
\Gamma^{\left(S^{\prime}\right)}(C)=S^{-1} \Gamma^{(5)}(C) S= \\
=\left(\begin{array}{cccc}
0 & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
-\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{ccc}
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\frac{1}{2} \\
\sqrt{\frac{1}{2}}
\end{array}-\sqrt{\frac{1}{6}}\right. & -\sqrt{\frac{1}{6}}
\end{array}-\sqrt{\frac{1}{3}}\right.
\end{array}\right)=\left\{\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Representations

$$
\begin{aligned}
& \Gamma^{\left(5^{\prime}\right)}(C)=S^{-1} \Gamma^{(5)}(C) S= \\
& =\left(\begin{array}{ccc}
0 & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}} \\
-\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}}
\end{array}\right)=
\end{aligned}
$$

Representations

$$
\begin{gathered}
\Gamma^{\left(5^{\prime}\right)}(C)=S^{-1} \Gamma^{(5)}(C) S= \\
=\left(\begin{array}{cccc}
0 & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\
\sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{6}} \\
-\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{3}}
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}}
\end{array}\right)= \\
=\left(\begin{array}{cc|c}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\hline 0 & 0 & 1
\end{array}\right) \quad=\Gamma^{(3)}(B) \oplus \Gamma^{(1)}(B)
\end{gathered}
$$

Characters

The character of a representation matrix is its trace (sum of its diagonal elements):

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

Characters

The character of a representation matrix is its trace (sum of its diagonal elements):

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

The traces of matrices connected by a similarity transformation are equal. Therefore:

Characters

The character of a representation matrix is its trace (sum of its diagonal elements):

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

The traces of matrices connected by a similarity transformation are equal. Therefore:
a) elements of a group belonging to same class have the same character in any representation

Characters

The character of a representation matrix is its trace (sum of its diagonal elements):

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

The traces of matrices connected by a similarity transformation are equal. Therefore:
a) elements of a group belonging to same class have the same character in any representation
b) equivalent representations have the the same set of characters

Characters

From the definition:

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

Characters

From the definition:

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

and the invariance under similarity transformation it follows that if

$$
\Gamma^{(c)}=\Gamma^{(a)} \oplus \Gamma^{(b)}
$$

Characters

From the definition:

$$
\chi^{(j)}(R)=\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)
$$

and the invariance under similarity transformation it follows that if

$$
\Gamma^{(c)}=\Gamma^{(a)} \oplus \Gamma^{(b)}
$$

then

$$
\chi^{(c)}(R)=\chi^{(a)}(R)+\chi^{(b)}(R)
$$

Irreducible Representations

The number of inequivalent irreducible representations of a group is equal to the number of classes. Their dimensions are restricted by:

$$
\sum_{i} l_{i}^{2}=h
$$

where h is the order of the group

Irreducible Representations

$$
\sum_{i} l_{i}^{2}=h
$$

For the $\mathrm{C}_{3 \mathrm{v}}$ group, the order h of the group is 6 and there are 3 classes. There are therefore 3 irreducible representations

$$
6=\sum_{i} l_{i}^{2}=1^{2}+1^{2}+2^{2}
$$

two of which are unidimensional and one is bidimensional

Irreducible Representations

Schur's Lemma: Any matrix which commute with all the matrices of an irreducible representation must be a constant matrix c $\delta i j$

Irreducible Representations

Orthogonality theorem: The non equivalent irreducible, unitary representations satisfy:

$$
\sum_{R}\left(\Gamma_{\mu \nu}^{(i)}(R)\right)^{*}\left(\Gamma_{\alpha \beta}^{(j)}(R)\right)=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

Irreducible Representations

$$
\sum_{R}\left(\Gamma_{\mu \nu}^{(i)}(R)\right)^{*}\left(\Gamma_{\alpha \beta}^{(j)}(R)\right)=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

By applying the orthogonality theorem to the diagonal elements

$$
\sum_{R}\left(\Gamma_{\mu \mu}^{(i)}(R)\right)^{*}\left(\Gamma_{\alpha \alpha}^{(j)}(R)\right)=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha}
$$

we sum over μ and α :

$$
\begin{aligned}
\sum_{R}\left(\sum_{\mu} \Gamma_{\mu \mu}^{(i)}(R)^{*}\right)\left(\sum_{\alpha} \Gamma_{\alpha \alpha}^{(j)}(R)\right) & =\sum_{R} \chi^{(i)}(R)^{*} \chi^{(j)}(R) \\
& =\sum_{\mu=1}^{l_{i}} \sum_{\alpha=1}^{l_{j}} \frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha}=\frac{h}{l_{i}} \delta_{i j} \sum_{\mu=1}^{l_{i}} \sum_{\alpha=1}^{l_{j}} \delta_{\mu \alpha}
\end{aligned}
$$

Irreducible Representations

So we get the orthogonality relation for the characters of irreducible representations:

$$
\sum_{R} \chi^{(i)}(R)^{*} \chi^{(j)}(R)=h \delta_{i j}
$$

which implies that the characters $X^{\text {red }}$ of a reducible representation 「red ${ }^{\text {, can }}$ be expressed in the form

$$
\chi^{\text {red }}(R)=\sum_{j} a_{j} \chi^{(j)}(R)
$$

in which:

$$
a_{i}=\frac{1}{h} \sum_{R} \chi^{(i)}(R)^{*} \chi(R)
$$

Irreducible Representations

The orthogonality relation for the characters of irreducible representations allows us to calculate the character tables.
For $C_{3 v}$ we get:

Irreducible Representations

Decomposition of the $\Gamma^{(5)}$ representation of the group $C_{3 v}$ using the character properties.

$$
\begin{array}{lll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) & \Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

Irreducible Representations

Decomposition of the $\Gamma^{(5)}$ representation of the group $C_{3 v}$ using the character properties.

$$
\begin{array}{lll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) & \Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

The characters are: $\quad \chi^{(5)}(E)=3, \chi^{(5)}(A)=\chi^{(5)}(B)=\chi^{(5)}(C)=1, \chi^{(5)}(D)=\chi^{(5)}(F)=0$

Irreducible Representations

Decomposition of the $\Gamma^{(5)}$ representation of the group $C_{3 v}$ using the character properties.

$$
\begin{array}{lll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) & \Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

The characters are: $\quad \chi^{(5)}(E)=3, \chi^{(5)}(A)=\chi^{(5)}(B)=\chi^{(5)}(C)=1, \chi^{(5)}(D)=\chi^{(5)}(F)=0$
Therefore: $\quad a_{1}=\frac{1}{6}(3 \times 1+1 \times 1+1 \times 1+1 \times 1+0 \times 1+0 \times 1)=1$

$$
\begin{aligned}
& a_{2}=\frac{1}{6}(3 \times 1+1 \times(-1)+1 \times(-1)+1 \times(-1)+0 \times 1+0 \times 1)=0 \\
& a_{3}=\frac{1}{6}(3 \times 2+1 \times 0+1 \times 0+1 \times 0+0 \times 1+0 \times 1)=1
\end{aligned}
$$

Irreducible Representations

Decomposition of the $\Gamma^{(5)}$ representation of the group $C_{3 v}$ using the character properties.

$$
\begin{array}{lll}
\Gamma^{(5)}(E)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \Gamma^{(5)}(A)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(B)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma^{(5)}(C)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) & \Gamma^{(5)}(D)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \Gamma^{(5)}(F)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

The characters are: $\quad \chi^{(5)}(E)=3, \chi^{(5)}(A)=\chi^{(5)}(B)=\chi^{(5)}(C)=1, \chi^{(5)}(D)=\chi^{(5)}(F)=0$
Therefore: $\quad a_{1}=\frac{1}{6}(3 \times 1+1 \times 1+1 \times 1+1 \times 1+0 \times 1+0 \times 1)=1$

$$
\begin{aligned}
& a_{2}=\frac{1}{6}(3 \times 1+1 \times(-1)+1 \times(-1)+1 \times(-1)+0 \times 1+0 \times 1)=0 \\
& a_{3}=\frac{1}{6}(3 \times 2+1 \times 0+1 \times 0+1 \times 0+0 \times 1+0 \times 1)=1 \\
& \text { i.e.: } \quad \Gamma^{(5)}=\Gamma^{(1)} \oplus \Gamma^{(3)}
\end{aligned}
$$

Basis Functions

We can define sets of linearly independent functions φ whose transformations under the symmetry operations of the group P_{r} are given by:

$$
P_{R} \varphi_{k}^{(j)}(\vec{r})=\sum_{\lambda=1}^{n} \varphi_{\lambda}^{(j)}(\vec{r}) \Gamma_{\lambda k}^{(j)}(R)
$$

i.e. the transformation of the basis set of the representation Γ^{i} under the symmetry operation R is described by the matrix Γ^{i} (R).

The φ functions are said to constitute a set of basis functions for the group

Basis Functions

We constructed Γ^{3} in the group $\mathrm{C}_{3 v}$ by considering the coordinate transformation. Therefore the functions

$$
\begin{aligned}
& \varphi_{1}^{(3)}(\vec{r})=x \\
& \varphi_{2}^{(3)}(\vec{r})=y
\end{aligned}
$$

form a basis for the Γ^{3} representation of the group.
The function:

$$
\varphi_{1}^{(1)}(\vec{r})=z
$$

remains unchanged under any operation of the group and therefore constitute a basis for the Γ^{1} representation, as well as

$$
\varphi_{1}^{(1)^{\prime}}(\vec{r})=z^{2}
$$

and

$$
\varphi_{1}^{(1)^{\prime \prime}}(\vec{r})=x^{2}+y^{2}
$$

Basis Functions

By stopping to second order functions (d orbitals!) we get for $\mathrm{C}_{3 v}$ we can write:

	E	$3 \sigma_{\mathrm{v}}$	$2 \mathrm{C}_{3}$		
$\Gamma^{(1)}$	1	1	1	z	$x^{2}+y^{2} ; z^{2}$
$\Gamma^{(2)}$	1	-1	1	\boldsymbol{R}_{z}	
$\Gamma^{(3)}$	2	0	-1	$(x, y) ;\left(\boldsymbol{R}_{x}, \boldsymbol{R}_{y}\right)$	$\left(x^{2}-y^{2}, x y\right) ;(x z, y z)$

Product Representations

The direct product of two matrices is defined as:

$$
\begin{gathered}
\mathbf{C}=\mathbf{A} \times \mathbf{B}=\left(\begin{array}{ccc}
A_{11} \mathbf{B} & A_{12} \mathbf{B} & \ldots \ldots . \\
A_{21} \mathbf{B} & A_{22} \mathbf{B} & \ldots \ldots \\
\ldots \ldots . . & \ldots \ldots & \ldots . .
\end{array}\right) \\
C_{i k, j l}=A_{i j} B_{k l}
\end{gathered}
$$

The characters are related by:

$$
\chi(A \times B)=\chi(A) \chi(B)
$$

Product Representations

If $\Gamma(\mu)$ and $\Gamma^{(v)}$ are two representations of a group, the matrices

$$
\Gamma^{(\mu \times v)}(R)=\Gamma^{(\mu)}(R) \times \Gamma^{(v)}(R)
$$

constitute a representation $\Gamma(\mu \times v)$ called product representation

The number of times the irreducible representation $\Gamma^{(\alpha)}$ appears in the product representation is given by:

$$
a_{o \mu \nu}=\frac{1}{h} \sum_{R} \chi^{(\alpha)}(R)^{*} \chi^{(\mu)}(R) \chi^{(\nu)}(R)
$$

and in particular for $\alpha=1$:

$$
a_{1 \mu \nu}=\delta_{\mu \nu}
$$

Matrix Elements

As a consequence of the orthogonality theorem we have that:

$$
\sum_{R} \Gamma_{\alpha \beta}^{(j)}(R)=0
$$

for any representation other then the unit representation.
If $\psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ we have

$$
\int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\int P_{R} \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\sum_{\alpha} \Gamma_{\alpha \mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d \vec{r}
$$

by summing over all elements of the group we get

$$
\sum_{R} \int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\sum_{\alpha} \sum_{R} \Gamma_{o \mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d \vec{r}
$$

Matrix Elements

As a consequence of the orthogonality theorem we have that:

$$
\sum_{R} \Gamma_{\alpha \beta}^{(j)}(R)=0
$$

for any representation other then the unit representation.
If $\psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ we have

$$
\int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\int P_{R} \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\sum_{\alpha} \Gamma_{\alpha \mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d \vec{r}
$$

by summing over all elements of the group we get

$$
\sum_{R} \int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=\sum_{\alpha} \sum_{R} \Gamma_{\alpha \mu}^{(j)}(R) \int \psi_{\alpha}^{(j)}(\vec{r}) d \vec{r}=0
$$

Matrix Elements

So, if $\psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ and $\Gamma^{(j)}$ is not the unit representation we have:

$$
\int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=0
$$

For a symmetric system, the Ψ, Q and φ functions in the matrix element

$$
M=\left\langle\psi_{\alpha}^{(i)}\right| Q_{\beta}^{(j)}\left|\varphi_{\gamma}^{(k)}\right\rangle=\int \psi_{\alpha}^{(i)}(\vec{r})^{*} Q_{\beta}^{(j)}(\vec{r}) \varphi_{\gamma}^{(k)}(\vec{r}) d \vec{r}
$$

transform according to the irreducible representations $\Gamma^{(i)}, \Gamma^{(j)}$ and $\Gamma^{(k)}$ respectively. Therefore the integrand belong to the product representation:

$$
\Gamma^{(i)^{*}} \times \Gamma^{(j)} \times \Gamma^{(k)}=\sum_{\mu} a_{\mu} \Gamma^{(\mu)}
$$

Matrix Elements

So, if $\psi_{\mu}^{(j)}(\vec{r})$ is a member of a basis set for $\Gamma^{(j)}$ and $\Gamma^{(j)}$ is not the unit representation we have:

$$
\int \psi_{\mu}^{(j)}(\vec{r}) d \vec{r}=0
$$

For a symmetric system, the Ψ, Q and φ functions in the matrix element

$$
M=\left\langle\psi_{\alpha}^{(i)}\right| Q_{\beta}^{(j)}\left|\varphi_{\gamma}^{(k)}\right\rangle=\int \psi_{\alpha}^{(i)}(\vec{r})^{*} Q_{\beta}^{(j)}(\vec{r}) \varphi_{\gamma}^{(k)}(\vec{r}) d \vec{r}
$$

transform according to the irreducible representations $\Gamma^{(i)}, \Gamma^{(j)}$ and $\Gamma^{(k)}$ respectively. Therefore the integrand belong to the product representation:

$$
\Gamma^{(i)^{*}} \times \Gamma^{(j)} \times \Gamma^{(k)}=\sum_{\mu} a_{\mu} \Gamma^{(\mu)}
$$

The matrix element is $\neq 0$ only if the product representation of the integrand contains the unit representation

Matrix Elements Optical Selection Rules

$$
\left.\mu(\hbar \omega)=\frac{4 \pi^{2} e^{2}}{n m^{2} c \omega} \sum_{i f}|\langle f| \hat{e} \cdot \vec{p}| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-\hbar \omega\right)
$$

Matrix Elements Optical Selection Rules

$$
\left.\mu(\hbar \omega)=\frac{4 \pi^{2} e^{2}}{n m^{2} c \omega} \sum_{i f} \right\rvert\,\left\langlef \left(\left.\hat{e} \cdot \vec{p}|i\rangle\right|^{2} \delta\left(E_{f}-E_{i}-\hbar \omega\right)\right.\right.
$$

this determines the symmetry of the em field

Matrix Elements Optical Selection Rules

Matrix Elements Optical Selection Rules

$$
\left.\mu(\hbar \omega)=\frac{4 \pi^{2} e^{2}}{n m^{2} c \omega} \sum_{i f}|\langle f| \hat{e} \cdot \vec{p}| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}-\hbar \omega\right)
$$

$C_{3 v}$	E	$3 \sigma_{\mathrm{v}}$	$2 \mathrm{C}_{3}$		
$\Gamma^{(1)}$	1	1	1	z	$x^{2}+y^{2} ; z^{2}$
$\Gamma^{(2)}$	1	-1	1	\boldsymbol{R}_{z}	
$\Gamma^{(3)}$	2	0	-1	$(x, y) ;\left(\boldsymbol{R}_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right) ;(x z, y z)$

An em field polarized along z belongs to the $\Gamma^{(1)}$ representation

Optical Selection Rules

	E	$2 C_{3}$	$3 C_{2}$
$\Gamma(1)$	1	1	1
$\Gamma(2)$	1	1	-1
$\Gamma^{(3)}$	2	-1	0

	E	$2 C_{3}$	$3 C_{2}$	Allowed?		
$\left\langle\Gamma^{(1)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(1)}\right\rangle$	1	1	1	YES		
$\left\langle\Gamma^{(1)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(2)}\right\rangle$	1	1	-1	NO		
$\left\langle\Gamma^{(2)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(2)}\right\rangle$	1	1	1	YES		
$\left\langle\Gamma^{(1)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(3)}\right\rangle$	2	-1	0	$N O$		
$\left\langle\Gamma^{(2)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(3)}\right\rangle$	2	-1	0	$N O$		
$\left\langle\Gamma^{(3)}\left\\|\Gamma^{(1)}\right\\| \Gamma^{(3)}\right\rangle$	4	1	0	$Y E S$		

An em field polarized along z belongs to the $\Gamma^{(1)}$ representation

Matrix Elements Optical Selection Rules

$C_{3 v}$	E	$3 \sigma_{\mathrm{v}}$	$2 \mathrm{C}_{3}$		
$\Gamma^{(1)}$	1	1	1	z	$x^{2}+y^{2} ; z^{2}$
$\Gamma^{(2)}$	1	-1	1	\boldsymbol{R}_{z}	
$\Gamma^{(3)}$	2	0	-1	$(x, y) ;\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right) ;(x z, y z)$

Note that e.m. field polarized in the xy plane would belong to the $\Gamma^{(3)}$ representation and, because of the C_{3} symmetry the direction within the plane is irrelevant!

This is true for all cases in which there is a C_{n} symmetry axis obviously for $n>2$

Matrix Elements Optical Selection Rules

For the $C_{2 v}$ symmetry (e.g. the water molecule), the x, y and z directions are non equivalent

$\mathrm{C}_{2 v}$	E	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$	C_{2}		
$\mathrm{~A}_{1}$	1	1	1	1	z	$x^{2} ; y^{2} ; z^{2}$
$\mathrm{~A}_{2}$	1	-1	-1	1	\boldsymbol{R}_{z}	$x y$
$\mathrm{~B}_{1}$	1	1	-1	-1	$x ; \boldsymbol{R}_{y}$	$x z$
$\mathrm{~B}_{2}$	1	-1	1	-1	$y ; \boldsymbol{R}_{x}$	$y z$

Water

- Consider how the following orbitals behave when subjected to the symmetry operations of the point group $\mathrm{C}_{2 \mathrm{v}}$
$-\mathrm{O} 2 \mathrm{~s}, \mathrm{O} 2 \mathrm{p}_{\mathrm{x}} 2 \mathrm{p}_{\mathrm{z}}$ and $2 \mathrm{p}_{\mathrm{y}}$
$-\mathrm{H} 1 \mathrm{~s}+\mathrm{H} 2 \mathrm{~s}$ and H1s - H2s

Symmetry elements for $\mathrm{H}_{2} \mathrm{O}$

Transformation of $\mathrm{H}_{1 \mathrm{~s}}$ orbitals in $\mathrm{H}_{2} \mathrm{O}$

- We can classify the combinations $1 \mathrm{~s}(\mathrm{~A})+1 \mathrm{~s}(\mathrm{~B})$ and $1 \mathrm{~s}(\mathrm{~A})-$ $1 \mathrm{~s}(\mathrm{~B})$ by how they transform when the symmetry operations of the point group for the molecule $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ are applied

Figure 3.2 The transformations of the $\mathrm{H}-\mathrm{H}$ bonding orbital of H_{2} under the symmetry operations of the C_{2}. point group.

Figure 33 The transformations of the $\mathrm{H}-\mathrm{H}$ antibonding orbital of H_{2} under the symmetry operations of the $C_{2 n}$ point group. The point of interest is a comparison of the phases of this orbital 'before' (left) and 'after'.

Transformation of O_{pz} orbital in $\mathrm{H}_{2} \mathrm{O}$

Figure 2.12 The effects of the symmetry operations of the C_{3} point group on the oxygen $2 p$, orbital in the water molecule. The point of importance is the relative phases of the orbical 'before" (left) and "after' (right).

Transformation of the other O orbitals in $\mathrm{H}_{2} \mathrm{O}$

Figure 2.10 The effects of the symmery operations of the C_{23} point group on the oxygen 2 p , orbital in the water moltcule. The point of importance is the relative phases of the orbial 'before" (left) and 'after' (right).

Figure 28 The effects of the symmery operations of the C_{2} point group on the oxygen 2 p, ortial in the waver molecule. The point of importance is the relative phuses of the orbital "before' (left) and 'affer" (right).

MO diagram for $\mathrm{H}_{2} \mathrm{O}$

Figure 3.11 A schematic molecular orbital energy level diagram for $\mathrm{H}_{2} \mathrm{O}$.

SALCS for NH_{3}

Transforms as A_{1}

4.17 The combination
$\phi_{1}=\phi_{\mathrm{A}}+\phi_{\mathrm{B}}+\phi_{\mathrm{C}}$ of the three $\mathrm{H} 1 s$ orbitals in the $C_{3 v}$ molecule NH_{3} remains unchanged under a C_{3} rotation and under any of the vertical reflections.

4.15 The combination of H1s orbitals that are used to form e orbitals in NH_{3}. They overlap the p_{x} and p_{y} orbitals on the N atom.

Transform as E

SALCS for NH_{3}

Transforms as A_{1}

4.17 The combination
$\phi_{1}=\phi_{\mathrm{A}}+\phi_{\mathrm{B}}+\phi_{\mathrm{C}}$ of the three $\mathrm{H} 1 s$ orbitals in the $C_{3 v}$ molecule NH_{3} remains unchanged under a C_{3} rotation and under any of the vertical reflections.

4.15 The combination of H1s orbitals that are used to form e orbitals in NH_{3}. They overlap the p_{x} and p_{y} orbitals on the N atom.

Transform as E

Symmetry of N orbitals in NH_{3}

- The $\mathrm{N} 2 \mathrm{p}_{\mathrm{z}}$ orbital and the N 2 s orbital transform as A_{1} in the point group $\mathrm{C}_{3 \mathrm{v}}$
$\mathrm{N} 2 \mathrm{p}_{\mathrm{x}}$ and $2 \mathrm{p}_{\mathrm{y}}$ transform as E

$4.20 \mathrm{An} \mathrm{N}_{2} p_{\mathrm{I}}$ obbital in NH_{3} changes sign under a a_{4} reflection but an $\mathrm{N}_{2} p_{y}$ orbital is let unchanged. Hence the degenerate pair jointly has charkere 0 for this operation. The plan of the paper is the x-plane.

$\begin{aligned} & C_{3 \mathrm{v}} \\ & (3 m) \end{aligned}$	E	$2 C_{3}$	$3 \sigma_{v}$	$h=6$	
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

Examples of vibrational selection rules

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		$h=4$
$(2 m m)$						

$C_{3 w}$	E	$2 C_{3}$	$3 \sigma_{w}$	$h=6$	
$(3 m)$					
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{k}, R_{v}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

$\begin{aligned} & C_{4 w} \\ & (4 m m) \end{aligned}$	E	$2 C_{4}$	C_{2}	$2 \sigma_{\psi}$	$2 \sigma_{\text {d }}$	$h=8$	
A_{1}	1	1	1	1	1	\underline{z}	$x^{2}+y^{2} \cdot z^{2}$
A_{2}	1	1	1	- 1	-1	$R_{\text {r }}$	
B_{1}	1	-1	1	1	-1		$x^{2}-y^{2}$
B_{2}	1	-1	1	-1	1		$x y$
E	2	0	-2	0	0	$(x, y)\left(R_{s}, R_{p}\right)$	($x, y z$)

$\mathrm{A}_{1}, \mathrm{~B}_{1}$ and B_{2} symmetry vibrations will be IR active.
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}$ and B_{2} symmetry vibrations will be Raman active.
A_{1} and E symmetry vibrations will be IR active.
A_{1}, and E symmetry vibrations will be Raman active.
A_{1}, and E symmetry vibrations will be IR active.
$\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ and E symmetry vibrations will be Raman active.

Symmetry operations in a cube (O_{h} group)

Optical Selection Rules

Character Table and Bases for the Cubic Group O_{h}

Repr.	Basis	E	$3 \mathrm{C}_{4}^{2}$	$6 \mathrm{C}_{4}$	$6 \mathrm{C}_{2}$	$8 \mathrm{C}_{3}$	i	$3 \mathrm{iC}_{4}^{2}$	$6 \mathrm{iC}_{4}$	$6 \mathrm{iC}_{2}$	8 CiC 3
Γ_{1}	1	1	1	1	1	1	1	1	1	1	1
Γ_{2}	$\begin{aligned} & x^{4}\left(y^{2}-z^{2}\right)+ \\ & y^{4}\left(z^{2}-x^{2}\right)+ \\ & z^{4}\left(x^{2}-y^{2}\right) \end{aligned}$	1	1	-1	-1	1	1	1	-1	-1	1
Γ_{12}	$\begin{aligned} & x^{2}-y^{2} \\ & 2 z^{2}-x^{2}-y^{2} \\ & x y\left(x^{2}-y^{2}\right) \end{aligned}$	2	2	0	0	-1	2	2	0	0	-1
Γ_{15}^{\prime}	$\begin{aligned} & \mathrm{yz}\left(\mathrm{y}^{2}-\mathrm{z}^{2}\right) \\ & \mathrm{zx}\left(\mathrm{z}^{2}-\mathrm{x}^{2}\right) \end{aligned}$	3	-1	1	-1	0	3	-1	1	-1	0
Γ_{25}^{\prime}	$x y, y z, z x$	3	-1	-1	1	0	3	-1	-1	1	0
Γ_{1}^{\prime}	$\begin{aligned} & y y z\left[x^{4}\left(y^{2}-z^{2}\right)+\right. \\ & y^{4}\left(z^{2}-x^{2}\right)+ \\ & \left.z^{4}\left(x^{2}-y^{2}\right)\right] \end{aligned}$	1	1	1	1	1	-1	-1	-1	-1	-1
Γ_{2}^{\prime}	$x y z{ }^{\text {x }}$	1	1	-1	-1	1	-1	-1	1	1	-1
Γ_{12}^{\prime}	$\begin{aligned} & \operatorname{xyz}\left(x^{2}-y^{2}\right) \\ & \operatorname{xyz}\left(2 z^{2}-x^{2}-y^{2}\right) \end{aligned}$	2	2	0	0	-1	-2	-2	0	0	1
Γ_{15}	$\begin{aligned} & x, y, z \\ & z\left(x^{2}-y^{2}\right) \end{aligned}$	3	-1	1	-1	0	-3	1	-1	1	0
Γ_{25}	$\begin{aligned} & x\left(y^{2}-z^{2}\right) \\ & y\left(z^{2}-x^{2}\right) \\ & \hline \end{aligned}$	3	-1	-1	1	0	-3	1	1	-1	0

Optical Selection Rules

Character Table and Bases for the Cubic Group O_{h}

Repr.	Basis	E	$3 \mathrm{C}_{4}^{2}$	$6 \mathrm{C}_{4}$	$6 \mathrm{C}_{2}$	$8 \mathrm{C}_{3}$	i	$3 \mathrm{iC}{ }_{4}^{2}$	KiC_{4}	$6 \mathrm{iC}_{2}$	8 iC 3
Γ_{1}	1	1	1	1	1	1	1	1	1	1	1
Γ_{2}	$\begin{aligned} & x^{4}\left(y^{2}-z^{2}\right)+ \\ & y^{4}\left(z^{2}-x^{2}\right)+ \\ & z^{4}\left(x^{2}-y^{2}\right) \end{aligned}$	1	1	-1	-1	1	1	1	-1	-1	1
Γ_{12}	$\begin{aligned} & x^{2}-y^{2} \\ & 2 z^{2}-x^{2}-y^{2} \\ & x y\left(x^{2}-y^{2}\right) \end{aligned}$	2	2	0	0	-1	2	2	0	0	-1
Γ_{15}^{\prime}	$\begin{aligned} & \mathrm{yz}\left(y^{2}-z^{2}\right) \\ & \mathrm{zx}\left(\mathrm{z}^{2}-\mathrm{x}^{2}\right) \end{aligned}$	3	-1	1	-1	0	3	-1	1	-1	0
Γ_{25}^{\prime}	xy, yz, zx	3	-1	-1	1	0	3	-1	-1	1	0
Γ_{1}^{\prime}	$\begin{aligned} & x y z\left[x^{4}\left(y^{2}-z^{2}\right)+\right. \\ & y^{4}\left(z^{2}-x^{2}\right)+ \\ & \left.z^{4}\left(x^{2}-y^{2}\right)\right] \end{aligned}$	1	1	1	1	1	-1	-1	-1	-1	-1
Γ_{2}^{\prime}	$x y z$	1	1	-1	-1	1	-1	-1	1	1	-1
Γ_{12}^{\prime}	$\begin{aligned} & \operatorname{xyz}\left(x^{2}-y^{2}\right) \\ & \times y z\left(2 z^{2}-x^{2}-y^{2}\right) \end{aligned}$	2	2	0	0	-1	-2	-2	0	0	1
Γ_{15}	$\begin{aligned} & x, y, z \\ & z\left(x^{2}-y^{2}\right) \end{aligned}$	3	-1	1	-1	0	-3	1	-1	1	0
Γ_{25}	$\begin{aligned} & x\left(y^{2}-z^{2}\right) \\ & y\left(z^{2}-x^{2}\right) \\ & \hline \end{aligned}$	3	-1	-1	1	0	-3	1	1	-1	0

the em field transforms like Γ_{15}

The fcc Brillouin zone

Point/ line	Coordinate	Symmetry
Γ	$(0,0,0)$	$\boldsymbol{O}_{\boldsymbol{h}}$
L	$\pi / a(1,1,1)$	$\boldsymbol{D}_{3 \boldsymbol{d}}$
X	$(2 \pi / a, 0,0)$	$\boldsymbol{D}_{4 \boldsymbol{h}}$
K	$3 \pi / a(1,1,0)$	$\boldsymbol{C}_{\mathbf{2 v}}$
Λ	$\left(k_{x}, 0,0\right)$	$\boldsymbol{C}_{\mathbf{4 v}}$
Λ	$k(1,1,1)$	$\boldsymbol{C}_{\mathbf{3 v}}$
Σ	$k(1,1,0)$	$\boldsymbol{C}_{\mathbf{2 v}}$

Optical Selection Rules

Dipole selection rules for optical transitions in the fcc and bcc lattices

W. Eberhardt
Department of Phisics. and Laboratory for Research on the Stucture of Matter. University of Pennswania. Philadelphia. Pennswania 19104
F. J. Himpsel
Sinchrotron Radiation Center. University of Wisconsin-Madison. Stoughton. Wisconsm 53589
(Received 10 September 1979)

We present the compilation of dipole selection rules for all high-symmetry points and lines of the fcc and bcc lattices, which can be used for the interpretation of absorption or photoemission data in the one-electron direct-transition picture.

Optical Selection Rules

O_{h}	Γ_{1}	Γ_{2}	Γ_{12}	$\Gamma_{15}{ }^{\prime}$	$\Gamma_{2 S^{\prime}}$	$\Gamma_{1}{ }^{\prime}$	$\Gamma_{2^{\prime}}$	Γ_{12}	Γ_{15}	Γ_{25}
Γ_{1}			\ldots	. .	\ldots	\ldots	\ldots	\ldots	$+$	
Γ_{2}	. .	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	. \cdot	+
Γ_{12}		\ldots		\ldots	\ldots		.		+	+
$\Gamma_{15}{ }^{\prime}$		\ldots	\ldots	\ldots	\ldots	$+$	\cdots	$+$	+	$+$
$\Gamma_{25^{\prime}}$		\ldots	\ldots	\cdots	\ldots	. \cdot	$+$	+	+	+
$\Gamma_{1}{ }^{\prime}$		\ldots	\cdots	+	\cdots	\ldots	.		. .	
$\Gamma_{2}{ }^{\prime}$					+	\cdots	.	.	\cdots	
$\Gamma_{12^{\prime}}$				$+$	+	.	.	\ldots	\cdots	
Γ_{15}	$+$	\cdots	+	+	+	\ldots	\ldots	\ldots	\ldots	
Γ_{25}		$+$	+	$+$	+	\cdots	\cdots	.	\cdots	

Optical Selection Rules

TABLE III. Allowed dipole transitions at $\Delta .(+)$ is for \vec{A} parallel $\Delta ; \vec{A} \cdot \vec{p}$ is represented by Δ_{1}. (0) is for \vec{A} normal Δ : $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by Δ_{5}.

$C_{4 v}$	Δ_{1}	$\Delta_{1^{\prime}}$	Δ_{2}	$\Delta_{2^{\prime}}$	Δ_{5}
Δ_{1}	+	\cdots	\cdots	\cdots	0
$\Delta_{1^{\prime}}$	\cdots	+	\cdots	\cdots	0
Δ_{2}	\cdots	\cdots	+	\cdots	0
$\Delta_{2^{\prime}}$	\cdots	\cdots	\cdots	+	0
Δ_{5}	0	0	0	0	+

TABLE IV. Allowed dipole transitions at Σ, D, G, K, U, S, and Z. (+) is for $\overrightarrow{\mathrm{A}}$ parallel $\Sigma ; \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by Σ_{1}. (0) is for $\overrightarrow{\mathrm{A}}$ normal Σ, parallel $x, \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by Σ_{3}. (X) is for $\overrightarrow{\mathrm{A}}$ normal Σ, parallel $y ; \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by Σ_{4}.

$C_{2 v}$	Σ_{1}	Σ_{2}	Σ_{3}	Σ_{4}
Σ_{1}	+	\cdots	0	X
Σ_{2}	\cdots	+	X	0
Σ_{3}	0	X	+	\cdots
Σ_{4}	X	0	\cdots	+

Optical Selection Rules

TABLE VII. Allowed dipole transitions at $X .(+)$ is for $\overrightarrow{\mathrm{A}}$ parallel $\Delta ; \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by $X_{4^{\prime}}$, (0) is for $\overrightarrow{\mathrm{A}}$ normal $\Delta ; \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{p}}$ is represented by $X_{s^{\prime}}$.

$D_{4 h}$	X_{1}	X_{2}	χ_{3}	X_{4}	$X_{1}{ }^{\prime}$	$X_{2}{ }^{\prime}$	$X_{3}{ }^{\prime}$	$X_{4}{ }^{\prime}$	X_{5}	$X_{5}{ }^{\prime}$
X_{1}	. .	\ldots	\ldots	. .	\ldots	\ldots	\ldots	$+$.	0
X_{2} \cdot	.	\cdots	+	.		0
X_{3}	\ldots	\ldots	\ldots		\ldots	+	\ldots	.		0
X_{4}	. .				$+$. .	.			0
$X_{1}{ }^{\prime}$			-	+	. .	. \cdot	. .	.	0	\cdots
$X_{2}{ }^{\prime}$			+	.	\ldots	\ldots	\cdots	.	0	\ldots
$X_{3^{\prime}}$		+			\cdots	\ldots	\ldots	.	0	
$X_{4}{ }^{\prime}$	+					\cdots	\cdots	\cdots	0	
X_{5}	\cdots		\cdots	\cdots	0	0	0	0		+
$X_{s^{\prime}}$	0	0	0	0	\cdots	\cdots	\cdots	.	+	\cdots

