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Characteristics of synchrotron radiation 

Broad Spectrum

High Flux

Polarisation

Brightness: small divergence, small source size

Time Structure
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Synchrotron radiation
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Synchrotron radiation

Synchrotron radiation
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A synchrotron light source

Wednesday, July 10, 2013



A synchrotron light source
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A synchrotron light source

injector
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A synchrotron light source
Ring

injector

Wednesday, July 10, 2013



A synchrotron light source

beamlines

Ring

injector
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First observation of synchrotron radiation
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First observation of 
synchrotron radiation
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.... and the theory
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θ ≈ 1
2γ

Angle transformation

tan θ =
sin θ�

γ (β + cos θ�)
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z = γ
�
z� + βct��

t = γ

�
t� +

βz�

c

�

y = y� and x = x�

β ≡ v

c

γ ≡ 1�
1− β2

Lorentz transformations
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eiφ = ei(ωt−�k·�r)

φ = ωt− kzz − kxx− kyy

φ� = ω�t� − k�
zz

� − k�
xx� − k�

yy
�

φ� = φ

ω = γ
�
ω� + βck�

z

�

kz = γ

�
k�

z +
β

c
ω�

�

ky = k�
y and kx = k�

x

ω = ω�γ
�
1 + β cos θ��

Doppler shift

the two phases must be equal (e.g they could two wave 
crests)
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cos θ =
cos θ� + β

1 + β cos θ�

sin θ =
sin θ�

γ (1 + β cos θ�)

tan θ =
sin θ�

γ (β + cos θ�)

Angular transformations
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Useful formulas
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�F
�BR

�v

An electron in a magnetic field

The force is given by:
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�F =
d�p
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�BR

�v

An electron in a magnetic field

The force is given by:

�p = γm�v

where the momentum is

d�p

dt
= γm

d�v

dt
= −e�v × �B

a magnetic field does not change the energy so 
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−v2

R

�
= −evB

therefore
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Production of an SR 
pulse θ ≈ 1

2γ

θ ≈ 1
2γ

R

← 2∆τ →

time
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2∆τ =
electron trajectory
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− radiation path
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electron trajectory

v
− radiation path
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2∆τ ≈ m

2eBγ2

Production of an SR 
pulse θ ≈ 1

2γ

θ ≈ 1
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A pulse width in time 
domain

Corresponds to a photon energy distribution over a range

∆E ≈ �
2∆τ

=
2e�Bγ2

m
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Synchrotron radiation emitted by a bending magnet

High directionality

Defined 
polarization

Broad band

Light polarized in the (x,z) plane

Light polarized in the (y,z) plane
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Bending magnet radiation:
Spectral distribution for different beam energies
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Undulators & Wigglers
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Undulators

undulator’s field
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K =
λueB0

2πm0c

Θmax =
K

γ

Undulators & Wigglers

K < 1⇒Θmax < 1 / γ

K > 1⇒Θmax > 1 / γ
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λi =
λ0

2iγ2

�
1 +

K2

2

�

ωi =
2πc

λi

�σω

ω

�

i
≈ 1

iN

Spectral profile 

The radiation emitted on axis (          ) by the particle is characterized by 

  undulator’s period

harmonic number

electrons’ energy

undulator’s strength

undulator’s field

(N: number of undulator’s periods)

�
dI

dω/ω

�

i

(∆ω/ω)i
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Spectral profile for different K values 
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3rd generation synchrotron radiation sources

Source Energy 
(GeV )

Emittance 
(nm rad)

Circumference
(m)

MAX II 1.5 9 90

ALS 1.9 5.6 196.8

BESSY II 1.9 6.4 240

ELETTRA 2 7 258

Swiss LS 2.4 5 288

NSLS 2.5 50 170

SOLEIL 2.75 3.72 354

Canadian LS 2.9 18.2 170.4

Australian LS 3 6.88 216

DIAMOND 3 2.74 561.6

ESRF 6 4 844

APS 7 8.2 1104

Spring-8 8 6 1436
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An undulator
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An undulator on the storage ring
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An undulator on the storage ring
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An undulator on the storage ring
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Contents
Lienard-Wiechert potentials

Angular distribution of power radiated by accelerated particles
 non-relativistic motion: Larmor’s formula
 relativistic motion
 velocity || acceleration: bremsstrahlung
 velocity ⊥ acceleration: synchrotron radiation

Angular and frequency distribution of energy radiated: 
 the radiation integral
 radiation integral for bending magnet radiation
 radiation integral for undulator and wiggler radiation

Synchrotron light sources
 energy loss per  turn
 characteristics of synchrotron radiation
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Φ(x ,t) = e
(1− β ⋅n )R
⎡

⎣
⎢

⎤

⎦
⎥
ret

A(x ,t) = eβ
(1− β ⋅n )R
⎡

⎣
⎢

⎤

⎦
⎥
ret

Lienard-Wiechert Potentials

For a particle in motion the scalar and vector potentials take the 
Lienard -Wiechert form

t = t '+ R(t ')
c

[  ]ret means computed at “retarded time” t’
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The electric and magnetic fields are computed from the potentials

Lineard-Wiechert Potentials (II)

and are called Lineard-Wiechert fields

Power radiated by a particle on a surface is the flux of the Poynting vector

ΦΣ (S )(t) = S (x ,t) ⋅ndΣ
Σ
∫∫

Angular distribution of radiated power

radiation emitted by the particle

B(x ,t) = n × E⎡⎣ ⎤⎦ rit

dP
dΩ

= (S ⋅n)(1− n ⋅ β )R2

S =
c
4π

E × B

Ē = −∇Φ− ∂Ā

∂t
B̄ = −∇× Ā

Ē(x̄, t) = e

�
n̄− β̄

γ2(1− β̄ · n̄)3R2

�

rit

+ e

�
n̄× (n̄− β̄)× ˙̄β
(1− β̄ · n̄)3R

�

rit
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The electric and magnetic fields are computed from the potentials

Lineard-Wiechert Potentials (II)

velocity field

and are called Lineard-Wiechert fields

Power radiated by a particle on a surface is the flux of the Poynting vector

ΦΣ (S )(t) = S (x ,t) ⋅ndΣ
Σ
∫∫

Angular distribution of radiated power

radiation emitted by the particle

B(x ,t) = n × E⎡⎣ ⎤⎦ rit

dP
dΩ

= (S ⋅n)(1− n ⋅ β )R2

S =
c
4π
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Ē(x̄, t) = e
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γ2(1− β̄ · n̄)3R2

�

rit

+ e

�
n̄× (n̄− β̄)× ˙̄β
(1− β̄ · n̄)3R

�

rit
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The electric and magnetic fields are computed from the potentials

Lineard-Wiechert Potentials (II)

velocity field

and are called Lineard-Wiechert fields

acceleration field
Power radiated by a particle on a surface is the flux of the Poynting vector

ΦΣ (S )(t) = S (x ,t) ⋅ndΣ
Σ
∫∫

Angular distribution of radiated power

radiation emitted by the particle

B(x ,t) = n × E⎡⎣ ⎤⎦ rit

dP
dΩ

= (S ⋅n)(1− n ⋅ β )R2

S =
c
4π

E × B

Ē = −∇Φ− ∂Ā

∂t
B̄ = −∇× Ā

Ē(x̄, t) = e

�
n̄− β̄

γ2(1− β̄ · n̄)3R2

�

rit

+ e

�
n̄× (n̄− β̄)× ˙̄β
(1− β̄ · n̄)3R

�

rit
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Eacc (x ,t) =
e
c
n × (n × β )

R

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
rit

 

dP
dΩ

=
c
4π

REacc
2
=

e2

4π c
n × (n × β )

2

 
P =

2
3
e2

c
β
2

Angular distribution of radiated power: non 
relativistic motion

Integrating over the angles gives the total radiated power

Assuming and substituting the acceleration field

Larmor’s formula

θ is the angle between the acceleration and the observation direction 
 

dP
dΩ

=
e2

4π c2
β
2
sin2θ
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Angular distribution of radiated power: non 
relativistic motion

Integrating over the angles gives the total radiated power

Assuming and substituting the acceleration field

Larmor’s formula

θ is the angle between the acceleration and the observation direction 
 

dP
dΩ

=
e2

4π c2
β
2
sin2θ

 n,
β

polarization in the 
plane containing 
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Angular distribution of radiated power: 
relativistic motion

Total radiated power: computed either by integration over the angles or 
by relativistic transformation of the 4-acceleration in Larmor’s formula

Substituting the acceleration field

Relativistic generalization of 
Larmor’s formula

The pattern depends on the details of velocity and acceleration but it is 
dominated by the denominator

 

dP
dΩ

=
e2

4π c

n × (n − β ) × β⎡
⎣

⎤
⎦

2

(1− n ⋅ β )5

 
P =

2
3
e2

c
γ 6 ( β )2 − (β × β )2⎡

⎣
⎤
⎦
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Angular distribution of radiated power: 
relativistic motion

Total radiated power: computed either by integration over the angles or 
by relativistic transformation of the 4-acceleration in Larmor’s formula

Substituting the acceleration field

Relativistic generalization of 
Larmor’s formula

emission is peaked in the 
direction of the velocity

The pattern depends on the details of velocity and acceleration but it is 
dominated by the denominator

 

dP
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=
e2

4π c
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2

(1− n ⋅ β )5
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2
3
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c
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⎣
⎤
⎦
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velocity ⊥ acceleration: synchrotron radiation
Assuming and substituting the acceleration field β ⊥ β

Total radiated power

 

dP
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⎤
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γ 2 dp
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2
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velocity ⊥ acceleration: synchrotron radiation
Assuming and substituting the acceleration field β ⊥ β

Total radiated power

Strong dependence 1/m4 on the rest mass
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velocity ⊥ acceleration: synchrotron radiation
Assuming and substituting the acceleration field β ⊥ β

Total radiated power

Strong dependence 1/m4 on the rest mass P(v ⊥ a) ≈ γ2 P(v || a)

 

dP
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4π c
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The radiation integral
Angular and frequency distribution of the power received by an observer

Neglecting the velocity fields and assuming the observer in the far field: 
n constant

Radiation Integral

• determine the particle motion 

• compute the cross products and the phase factor

• integrate each component and take the vector square modulus

and since

we can integrate by parts and obtain:

d2I

dΩdω
=

e2

4π2c

������

∞�

−∞

n̄×
�
(n̄− β̄)× ˙̄β

�

(1− n̄ · β̄)2
eiω(t−n̄·r̄(t)/c)dt

������

2

n̄×
�
(n̄− β̄)× ˙̄β

�

(1− n̄ · β̄)2
=

d

dt

�
n̄×

�
n̄× β̄

�

1− n̄ · β̄

�

d2I

dΩdω
= 2

��Ā (ω)
��2 = 2

c

4π
R2

��� ˆ̄E (ω)
���
2

d2I

dΩdω
=

e2ω2

4π2c

������

∞�

−∞

n̄×
�
n̄× β̄

�
eiω(t−n̄·r̄(t)/c)dt

������

2
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n × (n × β ) = β −ε || sin
βct
ρ

⎛
⎝⎜

⎞
⎠⎟
+ ε⊥ cos

βct
ρ

⎛
⎝⎜

⎞
⎠⎟
sinθ

⎡

⎣
⎢

⎤

⎦
⎥

ω t − n ⋅ r (t)
c

⎛
⎝⎜

⎞
⎠⎟
=ω t − ρ

c
sin βct

ρ
⎛
⎝⎜

⎞
⎠⎟
cosθ

⎡

⎣
⎢

⎤

⎦
⎥

ξ =
ρω

3cγ3

�
1 + γ2θ2

�3/2

d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 �
1 + γ2θ2

�2
�
K2

2/3(ξ) +
γ2θ2

1 + γ2θ2
K2

1/3(ξ)
�

Radiation integral for synchrotron radiation

Trajectory of the arc of circumference

Substituting into the radiation integral and introducing

In the limit of small angles we compute

r̄(t) =
�

ρ

�
1− cos

βc

ρ
t

�
, ρ

�
sin

βc

ρ
t

�
, 0

�
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Polarisation of synchrotron radiation

In the orbit plane θ = 0, the polarisation is purely horizontal

Integrating on all the angles we get a polarization on the plan of the orbit 7 
times larger than on the plan perpendicular to the orbit

Angular distribution of the energy radiated

d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 �
1 + γ2θ2

�2
�
K2

2/3(ξ) +
γ2θ2

1 + γ2θ2
K2

1/3(ξ)
�

dI

dΩ
=
∞�

0

d2I

dω dΩ
dω =

7
16

e2γ5

ρ

1
(1 + γ2θ2)5/2

�
1 +

5
7

γ2θ2

1 + γ2θ2

�

Wednesday, July 10, 2013



Polarisation of synchrotron radiation

In the orbit plane θ = 0, the polarisation is purely horizontal

Polarisation in the 
orbit plane

Integrating on all the angles we get a polarization on the plan of the orbit 7 
times larger than on the plan perpendicular to the orbit

Angular distribution of the energy radiated

d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 �
1 + γ2θ2

�2
�
K2

2/3(ξ) +
γ2θ2
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K2

1/3(ξ)
�

dI

dΩ
=
∞�

0

d2I

dω dΩ
dω =

7
16

e2γ5

ρ

1
(1 + γ2θ2)5/2

�
1 +

5
7

γ2θ2

1 + γ2θ2

�
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Polarisation of synchrotron radiation

In the orbit plane θ = 0, the polarisation is purely horizontal

Polarisation in the 
orbit plane Polarisation orthogonal 

to the orbit plane

Integrating on all the angles we get a polarization on the plan of the orbit 7 
times larger than on the plan perpendicular to the orbit

Angular distribution of the energy radiated

d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2
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�
K2
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�
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=
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0
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dω dΩ
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ω � 3cγ3

ρ (1 + γ2θ2)3/2 ωc =
3
2

c

ρ
γ3

θ �
�

3c

ωρ

�1/3
θc =

1
γ

�ωc

ω

�1/3

Critical frequency and critical angle

The radiation intensity is negligible for ξ >> 1

Critical frequency

Higher frequencies 
have smaller critical 

angle

Critical angle

d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 �
1 + γ2θ2

�2
�
K2

2/3(ξ) +
γ2θ2

1 + γ2θ2
K2

1/3(ξ)
�

ξ =
ωρ

3cγ3

�
1 + γ2θ2

�3/2 � 1
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-2 -1 0 1 2
γθ

Polarization
d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 ��
1 + γ2θ2

�2
K2

2/3(ξ) +
�
1 + γ2θ2

�
γ2θ2K2

1/3(ξ)
�

d2
I

dΩ
dω

(a
rb

.
un

it
s) ω =

ωc

2
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ω =
ω c

2

d2
I

dΩ
ω
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.
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Polarization
d2I

dΩ dω
=

e2

3π2c

�
ωρ

cγ2

�2 �
1 + γ2θ2

�2
�
K2

2/3(ξ) +
γ2θ2

1 + γ2θ2
K2

1/3(ξ)
�
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Frequency distribution of radiated energy
Integrating on all angles we get the frequency distribution of the energy 
radiated 

ω << ωc
ω >> ωc

often expressed in terms of the 
function S(ξ) with ξ = ω/ωc

S(ξ) = 9 3
8π

ξ K5 /3(x)dx
ξ

∞

∫

dI
dω

= 3 e
2

c
γ ω
ωC

K5 /3(x)dx
ω /ωC

∞

∫
dI
dω

≈
e2

c
ωρ
c

⎛
⎝⎜

⎞
⎠⎟
1/3 dI

dω
≈

3π
2
e2

c
γ ω

ω c

⎛
⎝⎜

⎞
⎠⎟

1/2

e−ω /ωc

dI
dω

= 3 e
2

c
γ ω
ωC

K5 /3(x)dx
ω /ωC

∞

∫ =
8π e2γ
9c

S(ξ)
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U0 = Pdt∫ = PTb = P
2πρ
c

U0 (eV ) =
e2γ 4

3ε0ρ
= 88462.7 E(GeV )

4

ρ(m)

P =
U0

Tb
=
1
Tb

dI
dω

dω
0

ω

∫ =
1
Tb

2e2γ
9ε0c

ω c ξ dξ K5 /3(x)dx
ξ

∞

∫
0

ω

∫ =
e2c
6ε0c

γ 4

ρ2

P =
2
3

e2

m2c3
γ 2 dp

dt

2

=
2
3
e2c γ

4

ρ2

Total power radiated via synchrotron 
radiation emission in a storage ring

Total radiated power

Energy losses per turn

In the time spent in the bendings the particle loses the energy U0

One can verify that
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Undulator radiation
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E = γmc2

γ =
1�

1−
�

v
c

�2

λ� =
λu

γ

∆λ�

λ� =
1
N

λ = λ�γ (1− β cos θ)

λ � λu

2γ2

�
1 + γ2θ2

�

λ � λu

2γ2

�
1 +

K2

2
+ γ2θ2

�

K =
eB0λu

2πm0c

Undulator radiation
Laboratory Frame 

of Reference
Frame of Moving 

Electron
Frame of 
Observer

the electron 
radiates at the 
Lorentz contracted 
wavelength

Bandwidth:

Doppler shortened 
wavelength:

and considering 
the transverse 
motion
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�F = γm�a = −e�v × �B

�
ẍ = e

γm (−żBy)
z̈ = e

γm (ẋBy)

By = B0 sin
�

2πz

λ0

�
= B0 sin (kz)

Undulator radiation

Periodic array of magnetic poles providing 
a sinusoidal magnetic field on axis:

The Lorentz force is:

So we get the set of differential equations:
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�
ẍ = e

γm (−żBy)
z̈ = e

γm (ẋBy)

ẋ =
eB0

γm

cos (kz)
k

βx =
ẋ

c
=

K

γ
cos (kz)

K =
eB0λ0

2πmc
∼= 0.9337B0 [T]λ0 [cm]

Undulator radiation

integration of the first 
equation gives:

where we have defined
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βx =
ẋ

c
=

K

γ
cos (kz)

β2
x + β2

z = β2 (=constant)

Undulator radiation

The horizontal motion of the electron causes the electron 
velocity along the z axis to vary also, since the electron 
energy, and hence total speed remain unaltered:
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βz =
�

β2 − β2
x =

�

β2 −
�

K

γ
cos (kz)

�2

=

= β

�

1− K2

γ2β2
cos2 (kz) =

� β

�
1− K2

4γ2
− K2

4γ2
cos 2kz

�

β2
x + β2

z = β2 (=constant)

Undulator radiation
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�βz� � β

�
1− K2

4γ2

�

Ω =
2π �β� c

λ0

Undulator radiation

The average velocity along the z-axis is thus:

Since K/γ<<1, we can approximate z in the argument of the cosine 
with <β>ct so:

ẋ =
K

γ
c cos Ωt

ż = �β� c − K2

4γ2
c cos 2Ωt
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Ω =
2π �β� c

λ0

ẋ =
K

γ
c cos Ωt

ż = �β� c − K2

4γ2
c cos 2Ωt

The actual motion of the particle is quite small: for example, a realistic device with a 50 
mm period and K = 2 in a 2 GeV ring has a maximum deflection angle (x′) of 0.5 mrad 
and oscillation amplitude of 4 µm. The z-motion is even smaller with an amplitude of 
only 2.6 Å.

x = K
γ

c
Ω sin Ωt = K

γ
λ0

2π�β� sin Ωt

z = �β� ct − K2

4γ2
λ0

4π�β� sin 2Ωt

Undulator radiation

which can be integrated directly to give:
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Interference

d = λ0

�
1
�β� − cos θ

�

λ =
λ0

2nγ2

�
1 +

K2

2
+ γ2θ2

�

Undulator radiation

The difference in optical paths between the radiation emitted at A and the 
radiation emitted at B at an angle θ is 

and we get constructive inteference if d=nλ
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λ =
λ0

2nγ2

�
1 +

K2

2
+ γ2θ2

�

• The fundamental wavelength of the radiation is very much shorter than the period 
length of the device, because of the large γ2 term (for electrons, γ = 1957 E [GeV])

• The wavelength of the harmonics can be varied either by changing the electron beam 
energy (γ) or the insertion device field strength, and hence K value.

• The wavelength varies with observation angle. Overall therefore the spectrum covers a 
wide range of wavelength. However, if the range of observation angles is restricted 
using a "pinhole" aperture, the spectrum will show a series of lines at harmonic 
frequencies.

Undulator radiation
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The constructive interference condition over the whole length for an undulator of length L 
an d N periods gives:

L

�β� − L cos θ = nNλ

L

�β� − L cos θ = nNλ� + λ�

∆θ =
�

2λ

L
=

1
γ

�
1 + K2

2

nN

Undulator radiation

Destructive interference is obtained for a wavelength which satisfies:

Therefore:
∆λ

λ
=

1
nN

and for the angular 
aperture we get:
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B = (0, B0 sin(kuz), 0,)

r (t) = −
λuK
2πγ

sinωut ⋅ x̂ + βzct +
λuK

2

16πγ 2 cos(2ωut)
⎛
⎝⎜

⎞
⎠⎟
⋅ ẑ

K =
eB0λu
2πmc

βz = 1−
1
2γ 2 1+ K

2

2
⎛
⎝⎜

⎞
⎠⎟

d =
λu
β

− λu cosθ = nλ

λn =
λu
2γ 2n

1+ K
2

2
+ γ 2θ 2

⎛
⎝⎜

⎞
⎠⎟

Undulators and wigglers
Periodic array of magnetic 
poles providing a sinusoidal 
magnetic field on axis:

Undulator 
parameter

Constructive interference of radiation emitted at different poles

Solution of equation of motions:
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δ =
2πω

ω res (θ )

L N
Δω

ω res (θ)
⎛
⎝⎜

⎞
⎠⎟
=
sin2(NπΔω /ω res )
N 2 sin2 (πΔω /ω res )

Fn (K ,θ,φ)∝ n̂ × (n̂ × β )eiω (t− n̂⋅r /c)dt
−λ0 /2βc

λ0 /2βc

∫
2

d 2I
dΩdω

=
e2ω 2

4π 2c
n̂ × (n̂ × β )eiω (t− n̂⋅r /c)dt

−∞

∞

∫
2

d 2I
dΩdω

=
e2ω 2

4π 2c
n̂ × (n̂ × β )eiω (t− n̂⋅r /c)dt

−λ0 /2βc

λ0 /2βc

∫
2

1+ eiδ + ei2δ + ...+ ei(N −1)δ 2

d 2I
dΩdω

=
e2γ 2N 2

c
L N Δω

ω res (θ)
⎛
⎝⎜

⎞
⎠⎟
Fn (K ,θ,φ)

Radiation integral for a linear undulator (I)
The angular and frequency distribution of the energy emitted by a 
wiggler is computed again with the radiation integral:

Using the periodicity of the trajectory
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Fn (K ,0,0) =
n2K 2

(1+ K 2 / 2)
Jn+1

2

(Z ) − Jn−1
2

(Z )
⎡

⎣
⎢

⎤

⎦
⎥

2

Z =
nK 2

4(1+ K 2 / 2)

Radiation integral for a linear undulator (II)

e.g. on axis, 

Only odd harmonic are radiated on-axis; 

as K increases the harmonic becomes stronger

d 2I
dΩdω

=
e2γ 2N 2

c
L N Δω

ω res (θ)
⎛
⎝⎜

⎞
⎠⎟
Fn (K ,0,0)
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Undulator radiation
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Undulator radiation
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Undulator radiation
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Undulator radiation
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Undulators and wigglers

For large K the wiggler spectrum 
becomes similar to the bending magnet 
spectrum, 2Nu times larger.

Fixed B0,  to reach the bending magnet 
critical wavelength we need:

Radiated intensity emitted vs K

K 1 2 10 20

n 1 5 383 3015
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Undulators and wigglers
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Undulators and wigglers
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