Generation of Synchrotron Radiation

Characteristics of synchrotron radiation

Broad Spectrum

High Flux

Polarisation

Brightness: small divergence, small source size

Time Structure

THE ELECTROMAGNETIC SPECTRUM

THE ELECTROMAGNETIC SPECTRUM

THE ELECTROMAGNETIC SPECTRUM

A synchrotron light source

A synchrotron light source

A synchrotron light source

A synchrotron light source

A synchrotron light source

First observation of synchrotron radiation

Radiation from Electrons Accelerated in a Synchrotron

F. R. Elder, R. V. Langmuir, and H. C. Pollock General Electric Company, Schenectady, New York

(Received March 15, 1948)

High energy electrons subjected to large radial accelerations radiate considerable energy in the optical spectrum. The distribution of energy in the light from a synchrotron beam has been measured and compared with theory at several electron energies up to 80 Mev . The results indicate reasonable agreement with theory. Measurement of total light output allowed an estimate of electron current in the beam. High speed photography of the light permitted observation of the size and motion of the beam within the accelerator tube.

First observation of synchrotron radiation

Professor J. S. Schwinger of Harvard has calculated the distribution of the energy radiated, and has kindly sent us his results (expressions (1) through (4)).

For an electron of constant energy
$P(\omega) d \omega=(3 \sqrt{3} / 4 \pi) \omega_{0}\left(e^{2} / R\right)\left(E / m c^{2}\right)^{4}$

$$
\begin{equation*}
\times\left[\int_{\omega / \omega_{c}}^{\infty} K_{5 / 3}(x) d x\right]\left(\omega / \omega_{c}\right) d \omega, \tag{1}
\end{equation*}
$$

where $P(\omega) d \omega$ is the power radiated by one electron at the circular frequency ω in the range $d \omega . R$ is the radius of the orbit in $\mathrm{cm} ; \omega_{0}$ the angular velocity of the electron, $V / R ; e$ the electron charge in e.s.u.; E the total electron energy; and $K_{5 / 3}$ a cylinder function as defined in Watson's treatise on Bessel Functions. ω_{c} $=\frac{3}{2} \omega_{0}\left(E / m c^{2}\right)^{3} . \omega_{c}$ is a critical frequency which roughly measures the upper limit of the spectrum. The expression for the total power ra-
.... and the theory

and the theory

On the Classical Radiation of Accelerated Electrons

Julian Schwinger
Harvard University, Cambridge, Massachusetts

(Received March 8, 1949)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary chargecurrent distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direc-
tion of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

On the Classical Radiation of Accelerated Electrons

Julian Schwinger
Harvard University, Cambridge, Massachusetts

(Received March 8, 1949)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary chargecurrent distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direc-
tion of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

On the Classical Radiation of Accelerated Electrons

Julian Schwinger
Harvard University, Cambridge, Massachusetts

(Received March 8, 1949)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary chargecurrent distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direc-
tion of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

Bend-Magnet Radiation

Photon energy

Bend-Magnet Radiation

Undulator Radiation

$$
\lambda_{x}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)
$$

In the central radiation cone:

$$
\begin{aligned}
\frac{\Delta \omega}{\omega} & \simeq \frac{1}{N} \\
\theta_{\text {cen }} & \simeq \frac{1}{\gamma \sqrt{N}}
\end{aligned}
$$

Photon energy

Doppler shift

$$
\lambda=\lambda^{\prime}\left(1-\frac{v}{c} \cos \theta\right)
$$

Doppler shift

$\lambda=\lambda^{\prime}\left(1-\frac{v}{c} \cos \theta\right)$

$$
\begin{gathered}
\lambda=\lambda^{\prime} \gamma\left(1-\frac{v}{c} \cos \theta\right) \\
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}= \\
=\frac{E}{m_{0} c^{2}} \approx 1957 E(\mathrm{GeV})
\end{gathered}
$$

Angle transformation

$$
\begin{gathered}
\tan \theta=\frac{\sin \theta^{\prime}}{\gamma\left(\beta+\cos \theta^{\prime}\right)} \\
\theta \approx \frac{1}{2 \gamma}
\end{gathered}
$$

Lorentz transformations

$$
\begin{aligned}
z=\gamma\left(z^{\prime}+\beta c t^{\prime}\right) \\
t=\gamma\left(t^{\prime}+\frac{\beta z^{\prime}}{c}\right) \\
y=y^{\prime} \text { and } x=x^{\prime} \\
\beta \equiv \frac{v}{c} \\
\gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Doppler shift

$$
\begin{gathered}
e^{i \phi}=e^{i(\omega t-\vec{k} \cdot \vec{r})} \\
\phi=\omega t-k_{z} z-k_{x} x-k_{y} y \\
\phi^{\prime}=\omega^{\prime} t^{\prime}-k_{z}^{\prime} z^{\prime}-k_{x}^{\prime} x^{\prime}-k_{y}^{\prime} y^{\prime}
\end{gathered}
$$

the two phases must be equal (e.g they could two wave crests)

$$
\phi^{\prime}=\phi
$$

$$
\begin{aligned}
\omega & =\gamma\left(\omega^{\prime}+\beta c k_{z}^{\prime}\right) \\
k_{z} & =\gamma\left(k_{z}^{\prime}+\frac{\beta}{c} \omega^{\prime}\right) \quad \omega=\omega^{\prime} \gamma\left(1+\beta \cos \theta^{\prime}\right) \\
k_{y} & =k_{y}^{\prime} \text { and } k_{x}=k_{x}^{\prime}
\end{aligned}
$$

Angular transformations

$$
\cos \theta=\frac{\cos \theta^{\prime}+\beta}{1+\beta \cos \theta^{\prime}}
$$

$$
\sin \theta=\frac{\sin \theta^{\prime}}{\gamma\left(1+\beta \cos \theta^{\prime}\right)}
$$

$$
\tan \theta=\frac{\sin \theta^{\prime}}{\gamma\left(\beta+\cos \theta^{\prime}\right)}
$$

Useful formulas

$\gamma=\frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{c^{2}}}}=\frac{1}{\sqrt{1-\beta^{2}}} ; \beta=\frac{\mathrm{v}}{c}$
$E_{e}=\gamma m c^{2}, p=\gamma m \mathbf{v}$
$\gamma=\frac{E_{e}}{m c^{2}}=1957 E_{e}(\mathrm{GeV})$
$\hbar \omega \cdot \lambda=1239.842 \mathrm{eV} \cdot \mathrm{nm}$
1 watt $\Rightarrow 5.034 \times 10^{15} \lambda[\mathrm{~nm}] \frac{\text { photons }}{\mathrm{s}}$
Bending Magnet: $E_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m}, \quad E_{c}(\mathrm{keV})=0.6650 E_{e}^{2}(\mathrm{GeV}) B(\mathrm{~T})$
Undulator: $\lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) ; E(\mathrm{keV})=\frac{0.9496 E_{e}^{2}(\mathrm{GeV})}{\lambda_{u}(\mathrm{~cm})\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)}$
where $\quad K \equiv \frac{e B_{0} \lambda_{u}}{2 \pi m c}=0.9337 B_{0}(\mathrm{~T}) \lambda_{u}(\mathrm{~cm})$

An electron in a magnetic field

The force is given by:

An electron in a magnetic field

The force is given by:

$$
\vec{F}=\frac{d \vec{p}}{d t}=-e \vec{v} \times \vec{B}
$$

An electron in a magnetic field

The force is given by:

$$
\vec{F}=\frac{d \vec{p}}{d t}=-e \vec{v} \times \vec{B}
$$

where the momentum is

$$
\vec{p}=\gamma m \vec{v}
$$

An electron in a magnetic field

The force is given by:
$\vec{F}=\frac{d \vec{p}}{d t}=-e \vec{v} \times \vec{B}$
where the momentum is
$\vec{p}=\gamma m \vec{v}$
a magnetic field does not change the energy so
$\frac{d \vec{p}}{d t}=\gamma m \frac{d \vec{v}}{d t}=-e \vec{v} \times \vec{B}$

An electron in a magnetic field

The force is given by:
$\vec{F}=\frac{d \vec{p}}{d t}=-e \vec{v} \times \vec{B}$
where the momentum is
$\vec{p}=\gamma m \vec{v}$
a magnetic field does not change the energy so
$\frac{d \vec{p}}{d t}=\gamma m \frac{d \vec{v}}{d t}=-e \vec{v} \times \vec{B}$
therefore
$\gamma m\left(-\frac{v^{2}}{R}\right)=-e v B$

An electron in a magnetic field

The force is given by:
$\vec{F}=\frac{d \vec{p}}{d t}=-e \vec{v} \times \vec{B}$
where the momentum is
$\vec{p}=\gamma m \vec{v}$
a magnetic field does not change the energy so
$\frac{d \vec{p}}{d t}=\gamma m \frac{d \vec{v}}{d t}=-e \vec{v} \times \vec{B}$
therefore
$\gamma m\left(-\frac{v^{2}}{R}\right)=-e v B$
and: $\quad R=\frac{\gamma m v}{e B} \simeq \frac{\gamma m c}{e B}$

Production of an SR
pulse

Production of an SR

pulse
 \section*{an SR}

Production of an SR
pulse
$2 \Delta \tau=\frac{\text { electron trajectory }}{v}-\frac{\text { radiation path }}{c}$

time
$2 \Delta \tau \simeq \frac{R \cdot 2 \theta}{v}-\frac{2 R \sin \theta}{c}$

Production of an SR

time
$2 \Delta \tau=\frac{\text { electron trajectory }}{v}-\frac{\text { radiation path }}{c}$
$\theta \simeq 1 / 2 \gamma \quad \sin \theta \simeq \theta$

Production of an SR

都

time
$2 \Delta \tau=\frac{\text { electron trajectory }}{v}-\frac{\text { radiation path }}{c}$
$\theta \simeq 1 / 2 \gamma \quad \sin \theta \simeq \theta$
$2 \Delta \tau \simeq \frac{R}{\gamma}\left(\frac{1}{v}-\frac{1}{c}\right)=\frac{R}{\gamma \beta c}(1-\beta)$

Production of an SR

pulse
 -

time
$2 \Delta \tau=\frac{\text { electron trajectory }}{v}-\frac{\text { radiation path }}{c}$
$\theta \simeq 1 / 2 \gamma \quad \sin \theta \simeq \theta$
$2 \Delta \tau \simeq \frac{R}{\gamma}\left(\frac{1}{v}-\frac{1}{c}\right)=\frac{R}{\gamma \beta c}(1-\beta)$
$1-\beta \simeq \frac{1}{2 \gamma^{2}} \quad R \simeq \frac{\gamma m c}{e B}$

Production of an SR

pulse

-

time
$\theta \simeq 1 / 2 \gamma \quad \sin \theta \simeq \theta$
$2 \Delta \tau \simeq \frac{R}{\gamma}\left(\frac{1}{v}-\frac{1}{c}\right)=\frac{R}{\gamma \beta c}(1-\beta)$
$1-\beta \simeq \frac{1}{2 \gamma^{2}} \quad R \simeq \frac{\gamma m c}{e B}$
$2 \Delta \tau \approx \frac{m}{2 e B \gamma^{2}}$

Production of an SR

pulse

A pulse width in time domain

$$
2 \Delta \tau \approx \frac{m}{2 e B \gamma^{2}}
$$

Corresponds to a photon energy distribution over a range
$\Delta E \approx \frac{\hbar}{2 \Delta \tau}=\frac{2 e \hbar B \gamma^{2}}{m}$

Synchrotron radiation emitted by a bending magnet

Bending magnet radiation:
Spectral distribution for different beam energies

Undulators \& Wigglers

undulator period

Undulators

Undulators \& Wigglers

$$
\begin{array}{r}
K=\frac{\lambda_{u} e B_{0}}{2 \pi m_{0} c} \\
\Theta_{\max }=\frac{K}{\gamma} \\
K<1 \Rightarrow \Theta_{\max }<1 / \gamma \\
K>1 \Rightarrow \Theta_{\max }>1 / \gamma
\end{array}
$$

Spectral profile

The radiation emitted on axis $(\vartheta=0)$ by the particle is characterized by

$$
\lambda_{i}=\frac{\lambda_{0}}{2 i \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

λ_{0} undulator's period
i harmonic number
γ electrons' energy
$K \propto \lambda_{0} B_{0}$ undulator's strength
B_{0} undulator's field

Spectral profile for different K values

$3^{\text {rd }}$ generation synchrotron radiation sources

Source	Energy (GeV)	Emittance $(\mathrm{nm}$ rad)	Circumference (m)
MAX II	1.5	9	90
ALS	1.9	5.6	196.8
BESSY II	1.9	6.4	240
ELETTRA	2	7	258
Swiss LS	2.4	5	288
NSLS	2.5	50	170
SOLEIL	2.75	3.72	354
Canadian LS	2.9	18.2	170.4
Australian LS	3	2.88	216
DIAMOND	3	4	561.6
ESRF	6	8.2	844
APS	7	6	1104
Spring-8	8	1436	

An undulator

An undulator on the storage ring

An undulator on the storage ring

An undulator on the storage ring

Photon sources at elettra

Contents

Lienard-Wiechert potentials

Angular distribution of power radiated by accelerated particles non-relativistic motion: Larmor's formula relativistic motion
velocity || acceleration: bremsstrahlung
velocity \perp acceleration: synchrotron radiation

Angular and frequency distribution of energy radiated: the radiation integral radiation integral for bending magnet radiation radiation integral for undulator and wiggler radiation

Synchrotron light sources
energy loss per turn
characteristics of synchrotron radiation

Lienard-Wiechert Potentials

For a particle in motion the scalar and vector potentials take the Lienard -Wiechert form

$$
\Phi(\bar{x}, t)=\left[\frac{e}{(1-\bar{\beta} \cdot \bar{n}) R}\right]_{r e t}
$$

$$
\bar{A}(\bar{x}, t)=\left[\frac{e \bar{\beta}}{(1-\bar{\beta} \cdot \bar{n}) R}\right]_{r e t}
$$

[] ${ }_{\text {ret }}$ means computed at "retarded time" t'
$t=t^{\prime}+\frac{R\left(t^{\prime}\right)}{c}$

Lineard-Wiechert Potentials (II)

The electric and magnetic fields are computed from the potentials

$$
\bar{E}=-\nabla \Phi-\frac{\partial \bar{A}}{\partial t} \quad \bar{B}=-\nabla \times \bar{A}
$$

and are called Lineard-Wiechert fields

$$
\bar{E}(\bar{x}, t)=e\left[\frac{\bar{n}-\bar{\beta}}{\gamma^{2}(1-\bar{\beta} \cdot \bar{n})^{3} R^{2}}\right]_{r i t}+e\left[\frac{\bar{n} \times(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}}{(1-\bar{\beta} \cdot \bar{n})^{3} R}\right]_{r i t} \bar{B}(\bar{x}, t)=[\bar{n} \times \bar{E}]_{r i t}
$$

Power radiated by a particle on a surface is the flux of the Poynting vector

$$
\bar{S}=\frac{c}{4 \pi} \bar{E} \times \bar{B} \quad \Phi_{\Sigma}(\bar{S})(t)=\iint_{\Sigma} \bar{S}(\bar{x}, t) \cdot \bar{n} d \Sigma
$$

Angular distribution of radiated power

$$
\frac{d P}{d \Omega}=(\bar{S} \cdot n)(1-\bar{n} \cdot \bar{\beta}) R^{2}
$$

radiation emitted by the particle

Lineard-Wiechert Potentials (II)

The electric and magnetic fields are computed from the potentials

$$
\bar{E}=-\nabla \Phi-\frac{\partial \bar{A}}{\partial t} \quad \bar{B}=-\nabla \times \bar{A}
$$

and are called Lineard-Wiechert fields

$$
\begin{gathered}
\bar{E}(\bar{x}, t)=e\left[\frac{\bar{n}-\bar{\beta}}{\gamma^{2}(1-\bar{\beta} \cdot \bar{n})^{3} R^{2}}\right] \int_{r i t}+e\left[\frac{\bar{n} \times(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}}{(1-\bar{\beta} \cdot \bar{n})^{3} R}\right]_{r i t} \quad \bar{B}(\bar{x}, t)=[\bar{n} \times \bar{E}]_{r i t} \\
\quad \text { velocity field }
\end{gathered}
$$

Power radiated by a particle on a surface is the flux of the Poynting vector

$$
\bar{S}=\frac{c}{4 \pi} \bar{E} \times \bar{B} \quad \Phi_{\Sigma}(\bar{S})(t)=\iint_{\Sigma} \bar{S}(\bar{x}, t) \cdot \bar{n} d \Sigma
$$

Angular distribution of radiated power

$$
\frac{d P}{d \Omega}=(\bar{S} \cdot n)(1-\bar{n} \cdot \bar{\beta}) R^{2}
$$

radiation emitted by the particle

Lineard-Wiechert Potentials (II)

The electric and magnetic fields are computed from the potentials

$$
\bar{E}=-\nabla \Phi-\frac{\partial \bar{A}}{\partial t} \quad \bar{B}=-\nabla \times \bar{A}
$$

and are called Lineard-Wiechert fields

$$
\begin{aligned}
& \bar{E}(\bar{x}, t)=e\left[\frac{\bar{n}-\bar{\beta}}{\gamma^{2}(1-\bar{\beta} \cdot \bar{n})^{3} R^{2}}\right]+\left[\frac{\bar{n} \times(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}}{(1-\bar{\beta} \cdot \bar{n})^{3} R}\right]_{r i t} \bar{B}(\bar{x}, t)=[\bar{n} \times \bar{E}]_{r i t} \\
& \text { velocity field } \\
& \text { acceleration field } \quad \propto \frac{l}{R} \quad \vec{E} \perp \bar{B} \perp \hat{n}
\end{aligned}
$$

Power radiated by a particle on a surface is the flux of the Poynting vector

$$
\bar{S}=\frac{c}{4 \pi} \bar{E} \times \bar{B} \quad \Phi_{\Sigma}(\bar{S})(t)=\iint_{\Sigma} \bar{S}(\bar{x}, t) \cdot \bar{n} d \Sigma
$$

Angular distribution of radiated power

$$
\frac{d P}{d \Omega}=(\bar{S} \cdot n)(1-\bar{n} \cdot \bar{\beta}) R^{2}
$$

radiation emitted by the particle

Angular distribution of radiated power: non relativistic motion

Assuming $\bar{\beta} \approx \overline{0}$ and substituting the acceleration field

$$
\begin{aligned}
& \bar{E}_{a c c}(\bar{x}, t)=\frac{e}{c}\left[\frac{\bar{n} \times(\bar{n} \times \dot{\bar{\beta}})}{R}\right]_{r i t} \\
& \frac{d P}{d \Omega}=\frac{c}{4 \pi}\left|R \bar{E}_{a c c}\right|^{2}=\frac{e^{2}}{4 \pi c}|\bar{n} \times(\bar{n} \times \dot{\bar{\beta}})|^{2} \\
& \frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi c^{2}}|\dot{\bar{\beta}}|^{2} \sin ^{2} \theta
\end{aligned}
$$

θ is the angle between the acceleration and the observation direction
Integrating over the angles gives the total radiated power

$$
P=\frac{2}{3} \frac{e^{2}}{c}|\dot{\bar{\beta}}|^{2} \quad \text { Larmor's formula }
$$

Angular distribution of radiated power: non relativistic motion

Assuming $\bar{\beta} \approx \overline{0}$ and substituting the acceleration field

$$
\begin{aligned}
& \bar{E}_{a c c}(\bar{x}, t)=\frac{e}{c}\left[\frac{\bar{n} \times(\bar{n} \times \dot{\bar{\beta}})}{R}\right]_{r i t} \\
& \frac{d P}{d \Omega}=\frac{c}{4 \pi}\left|R \bar{E}_{a c c}\right|^{2}=\frac{e^{2}}{4 \pi c}|\bar{n} \times(\bar{n} \times \dot{\bar{\beta}})|^{2} \\
& \frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi c^{2}}|\dot{\bar{\beta}}|^{2} \sin ^{2} \theta
\end{aligned}
$$

θ is the angle between the acceleration and the observation direction
Integrating over the angles gives the total radiated power

$$
P=\frac{2}{3} \frac{e^{2}}{c}|\dot{\bar{\beta}}|^{2} \quad \text { Larmor's formula }
$$

polarization in the plane containing $\bar{n}, \dot{\bar{\beta}}$

Angular distribution of radiated power: relativistic motion

Substituting the acceleration field

$$
\frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi c} \frac{|\bar{n} \times[(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}]|^{2}}{(1-\bar{n} \cdot \bar{\beta})^{5}}
$$

The pattern depends on the details of velocity and acceleration but it is dominated by the denominator

Total radiated power: computed either by integration over the angles or by relativistic transformation of the 4-acceleration in Larmor's formula

$$
P=\frac{2}{3} \frac{e^{2}}{c} \gamma^{6}\left[(\dot{\bar{\beta}})^{2}-(\bar{\beta} \times \dot{\bar{\beta}})^{2}\right]
$$

Relativistic generalization of
Larmor's formula

Angular distribution of radiated power: relativistic motion

Substituting the acceleration field

$$
\frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi c} \frac{|\bar{n} \times[(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}]|^{2}}{\left.(1-\bar{n} \cdot \bar{\beta})^{5}\right)} \quad \begin{gathered}
\text { emission is peaked in the } \\
\text { direction of the velocity }
\end{gathered}
$$

The pattern depends on the details of velocity and acceleration but it is dominated by the denominator

Total radiated power: computed either by integration over the angles or by relativistic transformation of the 4-acceleration in Larmor's formula

$$
P=\frac{2}{3} \frac{e^{2}}{c} \gamma^{6}\left[(\dot{\bar{\beta}})^{2}-(\bar{\beta} \times \dot{\bar{\beta}})^{2}\right]
$$

Relativistic generalization of
Larmor's formula

velocity \perp acceleration: synchrotron radiation

Assuming $\quad \bar{\beta} \perp \dot{\bar{\beta}} \quad$ and substituting the acceleration field

Total radiated power

$$
P=\frac{2}{3} \frac{e^{2}}{c}|\dot{\bar{\beta}}|^{2} \gamma^{4} \quad P=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \gamma^{2}\left|\frac{d \bar{p}}{d t}\right|^{2}
$$

velocity \perp acceleration: synchrotron radiation

Assuming $\quad \bar{\beta} \perp \dot{\bar{\beta}} \quad$ and substituting the acceleration field

Strong dependence $1 / \mathrm{m}^{4}$ on the rest mass

velocity \perp acceleration: synchrotron radiation

Assuming $\quad \bar{\beta} \perp \dot{\bar{\beta}} \quad$ and substituting the acceleration field

The radiation integral

Angular and frequency distribution of the power received by an observer

$$
\frac{d^{2} I}{d \Omega d \omega}=2|\bar{A}(\omega)|^{2}=2 \frac{c}{4 \pi} R^{2}|\hat{\bar{E}}(\omega)|^{2}
$$

Neglecting the velocity fields and assuming the observer in the far field: n constant
$\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \frac{\bar{n} \times[(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}]}{(1-\bar{n} \cdot \bar{\beta})^{2}} e^{i \omega(t-\bar{n} \cdot \bar{r}(t) / c)} d t\right|^{2} \quad$ Radiation Integral
and since $\frac{\bar{n} \times[(\bar{n}-\bar{\beta}) \times \dot{\bar{\beta}}]}{(1-\bar{n} \cdot \bar{\beta})^{2}}=\frac{d}{d t}\left[\frac{\bar{n} \times(\bar{n} \times \bar{\beta})}{1-\bar{n} \cdot \bar{\beta}}\right]$
we can integrate by parts and obtain: $\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \bar{n} \times(\bar{n} \times \bar{\beta}) e^{i \omega(t-\bar{n} \cdot \bar{r}(t) / c)} d t\right|^{2}$

- determine the particle motion
- compute the cross products and the phase factor
- integrate each component and take the vector square modulus

Radiation integral for synchrotron radiation

Trajectory of the arc of circumference

$$
\bar{r}(t)=\left(\rho\left(1-\cos \frac{\beta c}{\rho} t\right), \rho\left(\sin \frac{\beta c}{\rho} t\right), 0\right)
$$

In the limit of small angles we compute

$$
\bar{n} \times(\bar{n} \times \bar{\beta})=\beta\left[-\bar{\varepsilon}_{\|} \sin \left(\frac{\beta c t}{\rho}\right)+\bar{\varepsilon}_{\perp} \cos \left(\frac{\beta c t}{\rho}\right) \sin \theta\right]
$$

$$
\omega\left(t-\frac{\bar{n} \cdot \bar{r}(t)}{c}\right)=\omega\left[t-\frac{\rho}{c} \sin \left(\frac{\beta c t}{\rho}\right) \cos \theta\right]
$$

Substituting into the radiation integral and introducing $\quad \xi=\frac{\rho \omega}{3 c \gamma^{3}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2}$
$\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]$

Polarisation of synchrotron radiation

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

In the orbit plane $\theta=0$, the polarisation is purely horizontal
Angular distribution of the energy radiated

$$
\frac{d I}{d \Omega}=\int_{0}^{\infty} \frac{d^{2} I}{d \omega d \Omega} d \omega=\frac{7}{16} \frac{e^{2} \gamma^{5}}{\rho} \frac{1}{\left(1+\gamma^{2} \theta^{2}\right)^{5 / 2}}\left[1+\frac{5}{7} \frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\right]
$$

Integrating on all the angles we get a polarization on the plan of the orbit 7 times larger than on the plan perpendicular to the orbit

Polarisation of synchrotron radiation

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

In the orbit plane $\theta=0$, the polarisation is purely horizontal
Angular distribution of the energy radiated

$$
\frac{d I}{d \Omega}=\int_{0}^{\infty} \frac{d^{2} I}{d \omega d \Omega} d \omega=\frac{7}{16} \frac{e^{2} \gamma^{5}}{\rho} \frac{1}{\left(1+\gamma^{2} \theta^{2}\right)^{5 / 2}}\left[1+\frac{5}{7} \frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\right]
$$

Integrating on all the angles we get a polarization on the plan of the orbit 7 times larger than on the plan perpendicular to the orbit

Polarisation of synchrotron radiation

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

In the orbit plane $\theta=0$, the polarisation is purely horizontal
Angular distribution of the energy radiated

$$
\frac{d I}{d \Omega}=\int_{0}^{\infty} \frac{d^{2} I}{d \omega d \Omega} d \omega=\frac{7}{16} \frac{e^{2} \gamma^{5}}{\rho} \frac{1}{\left(1+\gamma^{2} \theta^{2}\right)^{5 / 2}}\left[1+\frac{5}{7} \frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\right]
$$

Integrating on all the angles we get a polarization on the plan of the orbit 7 times larger than on the plan perpendicular to the orbit

Critical frequency and critical angle

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

The radiation intensity is negligible for $\xi \gg 1$
$\xi=\frac{\omega \rho}{3 c \gamma^{3}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2} \gg 1$

Critical frequency
$\omega \gg \frac{3 c \gamma^{3}}{\rho\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2}} \quad \omega_{c}=\frac{3}{2} \frac{c}{\rho} \gamma^{3}$
Critical angle
$\theta \gg\left(\frac{3 c}{\omega \rho}\right)^{1 / 3}$
$\theta_{c}=\frac{1}{\gamma}\left(\frac{\omega_{c}}{\omega}\right)^{1 / 3}$

Polarization

Polarization

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2}}{3 \pi^{2} c}\left(\frac{\omega \rho}{c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

Frequency distribution of radiated energy

Integrating on all angles we get the frequency distribution of the energy radiated

$$
\begin{aligned}
& \frac{d I}{d \omega}=\sqrt{3} \frac{e^{2}}{c} \gamma \frac{\omega}{\omega_{C}} \int_{\omega / \omega_{C}}^{\infty} K_{5 / 3}(x) d x \\
& \frac{d I}{d \omega} \approx \frac{e^{2}}{c}\left(\frac{\omega \rho}{c}\right)^{1 / 3} \omega \ll \omega_{c} \quad \frac{d I}{d \omega} \approx \sqrt{\frac{3 \pi}{2}} \frac{e^{2}}{c} \gamma\left(\frac{\omega}{\omega_{c}}\right)^{1 / 2} e^{-\omega / \omega_{c}} \quad \omega \gg \omega_{c}
\end{aligned}
$$

often expressed in terms of the function $S(\xi)$ with $\xi=\omega / \omega_{c}$
$S(\xi)=\frac{9 \sqrt{3}}{8 \pi} \xi \int_{\xi}^{\infty} K_{5 / 3}(x) d x \quad \int_{0}^{\infty} S(\xi) d \xi=1$
$\frac{d I}{d \omega}=\sqrt{3} \frac{e^{2}}{c} \gamma \frac{\omega}{\omega_{C}} \int_{\omega / \omega_{c}}^{\infty} K_{5 / 3}(x) d x=\frac{8 \pi e^{2} \gamma}{9 c} S(\xi)$

Total power radiated via synchrotron radiation emission in a storage ring

Total radiated power

$$
P=\frac{2}{3} \frac{e^{2}}{m^{2} c^{3}} \gamma^{2}\left|\frac{d \bar{p}}{d t}\right|^{2}=\frac{2}{3} e^{2} c \frac{\gamma^{4}}{\rho^{2}}
$$

In the time spent in the bendings the particle loses the energy U_{0}

$$
U_{0}=\int P d t=P T_{b}=P \frac{2 \pi \rho}{c}
$$

Energy losses per turn

$$
U_{0}(e \mathrm{eV})=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=88462.7 \frac{E(\mathrm{GeV})^{4}}{\rho(m)}
$$

One can verify that

$$
P=\frac{U_{0}}{T_{b}}=\frac{1}{T_{b}} \int_{0}^{\omega} \frac{d I}{d \omega} d \omega=\frac{1}{T_{b}} \frac{2 e^{2} \gamma}{9 \varepsilon_{0} c} \omega_{c} \int_{0}^{\omega} \xi d \xi \int_{\xi}^{\infty} K_{5 / 3}(x) d x=\frac{e^{2} c}{6 \varepsilon_{0} c} \frac{\gamma^{4}}{\rho^{2}}
$$

Undulator radiation

Laboratory Frame of Reference

$E=\gamma m c^{2}$

$$
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

Frame of Moving Electron

the electron radiates at the
Lorentz contracted wavelength

$$
\lambda^{\prime}=\frac{\lambda_{u}}{\gamma}
$$

Bandwidth:

$$
\frac{\Delta \lambda^{\prime}}{\lambda^{\prime}}=\frac{1}{N}
$$

Frame of Observer

Doppler shortened wavelength:
$\lambda=\lambda^{\prime} \gamma(1-\beta \cos \theta)$
$\lambda \simeq \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)$
and considering the transverse motion

$$
\begin{gathered}
\lambda \simeq \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \\
K=\frac{e B_{0} \lambda_{u}}{2 \pi m_{0} c}
\end{gathered}
$$

Periodic array of magnetic poles providing a sinusoidal magnetic field on axis:

$$
B_{y}=B_{0} \sin \left(\frac{2 \pi z}{\lambda_{0}}\right)=B_{0} \sin (k z)
$$

The Lorentz force is: $\quad \vec{F}=\gamma m \vec{a}=-e \vec{v} \times \vec{B}$

So we get the set of differential equations: $\left\{\begin{array}{l}\ddot{x}=\frac{e}{\gamma m}\left(-\dot{z} B_{y}\right) \\ \ddot{z}=\frac{e}{\gamma m}\left(\dot{x} B_{y}\right)\end{array}\right.$

$$
\left\{\begin{array}{l}
\ddot{x}=\frac{e}{\gamma m}\left(-\dot{z} B_{y}\right) \\
\ddot{z}=\frac{e}{\gamma m}\left(\dot{x} B_{y}\right)
\end{array}\right.
$$

integration of the first $\quad \dot{x}=\frac{e B_{0}}{\gamma m} \frac{\cos (k z)}{k} \quad \beta_{x}=\frac{\dot{x}}{c}=\frac{K}{\gamma} \cos (k z)$
equation gives:
where we have defined

$$
K=\frac{e B_{0} \lambda_{0}}{2 \pi m c} \cong 0.9337 B_{0}[\mathrm{~T}] \lambda_{0}[\mathrm{~cm}]
$$

The horizontal motion of the electron causes the electron velocity along the z axis to vary also, since the electron energy, and hence total speed remain unaltered:

$$
\beta_{x}^{2}+\beta_{z}^{2}=\beta^{2}(=\mathrm{constant})
$$

Undulator radiation

$\beta_{x}^{2}+\beta_{z}^{2}=\beta^{2}(=$ constant $)$

$$
\begin{aligned}
\beta_{z}=\sqrt{\beta^{2}-\beta_{x}^{2}} & =\sqrt{\beta^{2}-\left(\frac{K}{\gamma} \cos (k z)\right)^{2}}= \\
& =\beta \sqrt{1-\frac{K^{2}}{\gamma^{2} \beta^{2}} \cos ^{2}(k z)}= \\
& \simeq \beta\left(1-\frac{K^{2}}{4 \gamma^{2}}-\frac{K^{2}}{4 \gamma^{2}} \cos 2 k z\right)
\end{aligned}
$$

Undulator radiation

The average velocity along the z-axis is thus:

$$
\left\langle\beta_{z}\right\rangle \simeq \beta\left(1-\frac{K^{2}}{4 \gamma^{2}}\right)
$$

Since $K / \gamma \ll 1$, we can approximate z in the argument of the cosine with $<\beta>$ ct so:

$$
\begin{array}{r}
\dot{x}=\frac{K}{\gamma} c \cos \Omega t \\
\dot{z}=\langle\beta\rangle c-\frac{K^{2}}{4 \gamma^{2}} c \cos 2 \Omega t
\end{array}
$$

$$
\Omega=\frac{2 \pi\langle\beta\rangle c}{\lambda_{0}}
$$

$$
\begin{array}{r}
\dot{x}=\frac{K}{\gamma} c \cos \Omega t \\
\dot{z}=\langle\beta\rangle c-\frac{K^{2}}{4 \gamma^{2}} c \cos 2 \Omega t
\end{array}
$$

$$
\Omega=\frac{2 \pi\langle\beta\rangle_{c}}{\lambda_{0}}
$$

which can be integrated directly to give:

$$
\begin{gathered}
x=\frac{K}{\gamma} \frac{c}{\Omega} \sin \Omega t=\frac{K}{\gamma} \frac{\lambda_{0}}{2 \pi\langle\beta\rangle} \sin \Omega t \\
z=\langle\beta\rangle c t-\frac{K^{2}}{4 \gamma^{2}} \frac{\lambda_{0}}{4 \pi\langle\beta\rangle} \sin 2 \Omega t
\end{gathered}
$$

The actual motion of the particle is quite small: for example, a realistic device with a 50 mm period and $\mathrm{K}=2$ in a 2 GeV ring has a maximum deflection angle (x^{\prime}) of 0.5 mrad and oscillation amplitude of $4 \mu \mathrm{~m}$. The z-motion is even smaller with an amplitude of only 2.6 Å.

Undulator radiation

Interference
The difference in optical paths between the radiation emitted at A and the radiation emitted at B at an angle θ is

$$
d=\lambda_{0}\left(\frac{1}{\langle\beta\rangle}-\cos \theta\right)
$$

and we get constructive inteference if $d=n \lambda$

$$
\lambda=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)
$$

Undulator radiation

$$
\lambda=\frac{\lambda_{0}}{2 n \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)
$$

- The fundamental wavelength of the radiation is very much shorter than the period length of the device, because of the large γ^{2} term (for electrons, $\gamma=1957 \mathrm{E}[\mathrm{GeV}]$)
- The wavelength of the harmonics can be varied either by changing the electron beam energy (Y) or the insertion device field strength, and hence K value.
- The wavelength varies with observation angle. Overall therefore the spectrum covers a wide range of wavelength. However, if the range of observation angles is restricted using a "pinhole" aperture, the spectrum will show a series of lines at harmonic frequencies.

The constructive interference condition over the whole length for an undulator of length L an d N periods gives:

$$
\frac{L}{\langle\beta\rangle}-L \cos \theta=n N \lambda
$$

Destructive interference is obtained for a wavelength which satisfies:

$$
\begin{aligned}
\frac{L}{\langle\beta\rangle}-L \cos \theta & =n N \lambda^{\prime}+\lambda^{\prime} \\
\text { Therefore: } \quad \frac{\Delta \lambda}{\lambda} & =\frac{1}{n N}
\end{aligned}
$$

and for the angular aperture we get:

$$
\Delta \theta=\sqrt{\frac{2 \lambda}{L}}=\frac{1}{\gamma} \sqrt{\frac{1+\frac{K^{2}}{2}}{n N}}
$$

Undulators and wigglers

Periodic array of magnetic poles providing a sinusoidal magnetic field on axis:

$$
\left.B=\left(\begin{array}{lll}
0, & B_{0} \sin \left(k_{u} z\right.
\end{array}\right), \quad 0,\right)
$$

Solution of equation of motions:

$$
\begin{aligned}
& K=\frac{e B_{0} \lambda_{u}}{2 \pi m c} \quad \begin{array}{l}
\text { Undulator } \\
\text { parameter }
\end{array} \\
& \bar{\beta}_{z}=1-\frac{1}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
\end{aligned}
$$

$\bar{r}(t)=-\frac{\lambda_{u} K}{2 \pi \gamma} \sin \omega_{u} t \cdot \hat{x}+\left(\bar{\beta}_{z} c t+\frac{\lambda_{u} K^{2}}{16 \pi \gamma^{2}} \cos \left(2 \omega_{u} t\right)\right) \cdot \hat{z}$
Constructive interference of radiation emitted at different poles

$$
\begin{aligned}
& d=\frac{\lambda_{u}}{\bar{\beta}}-\lambda_{u} \cos \theta=n \lambda \\
& \lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right)
\end{aligned}
$$

Radiation integral for a linear undulator (I)

The angular and frequency distribution of the energy emitted by a wiggler is computed again with the radiation integral:

$$
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c} \int_{-\infty}^{\infty} \hat{n} \times\left.(\hat{n} \times \bar{\beta}) e^{i \omega(t-\hat{n} \bar{r} / c)} d t\right|^{2}
$$

Using the periodicity of the trajectory

$\frac{d^{2} I}{d \Omega d \omega}=\left.\frac{e^{2} \omega^{2}}{4 \pi^{2} c}\right|_{-\lambda_{0} / 2 \bar{\beta} c} ^{\lambda_{0} / 2 \bar{\beta} c} \hat{n} \times\left.(\hat{n} \times \bar{\beta}) e^{i \omega(t-\hat{n} \cdot \bar{r} / c)} d t\right|^{2}\left|1+e^{i \delta}+e^{i 2 \delta}+\ldots+e^{i(N-1) \delta}\right|^{2} \delta=\frac{2 \pi \omega}{\omega_{r e s}(\theta)}$
$L\left(N \frac{\Delta \omega}{\omega_{r e s}(\theta)}\right)=\frac{\sin ^{2}\left(N \pi \Delta \omega / \omega_{r e s}\right)}{N^{2} \sin ^{2}\left(\pi \Delta \omega / \omega_{r e s}\right)} \quad F_{n}(K, \theta, \phi) \propto\left|\int_{-\lambda_{0} / 2 \bar{\beta} c}^{\lambda_{0} / 2 \bar{\beta} c} \hat{n} \times(\hat{n} \times \bar{\beta}) e^{i \omega(t-\hat{n} \cdot \bar{r} / c)} d t\right|^{2}$
$\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2} \gamma^{2} N^{2}}{c} L\left(N \frac{\Delta \omega}{\omega_{\text {res }}(\theta)}\right) F_{n}(K, \theta, \phi)$

Radiation integral for a linear undulator (II)

e.g. on axis,

$$
\begin{array}{ll}
\frac{d^{2} I}{d \Omega d \omega}=\frac{e^{2} \gamma^{2} N^{2}}{c} L\left(N \frac{\Delta \omega}{\omega_{\text {res }}(\theta)}\right) F_{n}(K, 0,0) \\
F_{n}(K, 0,0)=\frac{n^{2} K^{2}}{\left(1+K^{2} / 2\right)}\left[J_{\frac{n+1}{2}}(Z)-J_{\frac{n-1}{2}}(Z)\right]^{2} & Z=\frac{n K^{2}}{4\left(1+K^{2} / 2\right)}
\end{array}
$$

Only odd harmonic are radiated on-axis;
as K increases the harmonic becomes stronger

First and second harmonic motions

Radiation patterns in the electron and laboratory frames

$$
\begin{gather*}
\lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \tag{5.30}\\
\left(\frac{\Delta \lambda}{\lambda}\right)_{n}=\frac{1}{n N} \tag{5.31}
\end{gather*}
$$

(On-axis radiation, $\theta=0$)

Radiated Wavetrain

Spectral Distribution

Undulator radiation

Beam size (σ)

Beam angular divergence (σ^{\prime})

Preserving the spectral line shape of undulator radiation requires

$$
\begin{equation*}
\sigma^{\prime 2} \ll \theta_{\text {cen }}^{2} \tag{5.55b}
\end{equation*}
$$

Define effective, or total central cone half-angles
$\theta_{T x}=\sqrt{\theta_{\text {cen }}^{2}+\sigma_{x}^{\prime 2}}$ and $\theta_{T y}=\sqrt{\theta_{\text {cen }}^{2}+\sigma_{y}^{\prime 2}}$

Undulator radiation

APPLE-II type undulator: 4 different modes

1. mode: linear horizontal polarization

$$
\text { Linear: } S_{1}=1 \quad \text { Shift }=0
$$

3. mode: vertical linear polarization

Linear: $\mathrm{S}_{1}=-1 \quad$ Shift $=\lambda / 2$

2. mode: circular polarization

Circular: $\mathrm{S}_{3}=1 \quad \mathrm{Shift}=\lambda / 4$

4. mode: linear polarization under various angle shift of magnetic rows antiparallel

Undulators and wigglers

Radiated intensity emitted vs K

For large K the wiggler spectrum becomes similar to the bending magnet spectrum, $2 \mathrm{~N}_{\mathrm{u}}$ times larger.

Fixed B_{0}, to reach the bending magnet critical wavelength we need:

K	1	2	10	20
n	1	5	383	3015

Undulators and wigglers

Undulators and wigglers

At very high $\mathrm{K} \gg 1$, the radiated energy appears in very high harmonics, and at rather large horizontal angles $\theta \simeq \pm \mathrm{K} / \gamma$ (eq. 5.21). Because the emission angles are large, one tends to use larger collection angles, which tends to spectrally merge nearby harmonics. The result is a continuum at very high photon energies, similar to that of bending magnet radiation, but increased by 2 N (the number of magnet pole pieces).

$$
\begin{align*}
& E_{c}=\hbar \omega_{c}=\frac{3 e \hbar B \gamma^{2}}{2 m} ; \quad n_{c}=\frac{3 K}{4}\left(1+\frac{K^{2}}{2}\right) \\
& \left.\frac{d^{2} F}{d \theta d \psi d \omega / \omega}\right|_{0}=2.65 \times 10^{13} N E_{e}^{2}(\mathrm{GeV}) I(\mathrm{~A}) H_{2}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\operatorname{mrad}^{2}(0.1 \% \mathrm{BW})} \tag{5.86}\\
& \frac{d^{2} F}{d \theta d \omega / \omega}=4.92 \times 10^{13} N E_{e}(\mathrm{GeV}) I(\mathrm{~A}) G_{1}\left(E / E_{c}\right) \frac{\text { photons } / \mathrm{s}}{\mathrm{mrad} \cdot(0.1 \% \mathrm{BW})} \tag{5.87}
\end{align*}
$$

Facility	ALS	ELETTRA	Australian Synchrotron	APS
Electron energy	1.90 GeV	2.0 GeV	3.0 GeV	7.00 GeV
γ	3720	3910	5871	13,700
Current (mA)	400	300	200	100
Circumference (m)	197	259	216	1100
RF frequency (MHz)	500	500	500	352
Pulse duration (FWHM) (ps)	35-70	37	~ 100	100
Bending Magnet Radiation:				
Bending magnet field (T)	1.27	1.2	1.31	0.599
Critical photon energy (keV)	3.05	3.2	7.84	19.5
Critical photon wavelength	0.407 nm	0.39 nm	1.58 §	$0.636 \AA$
Bending magnet sources	24	12	28	35
Undulator Radiation:				
Number of straight sections	12	12	14	40
Undulator period (typical) (cm)	5.00	5.6	22.0	3.30
Number of periods	89	81	80	72
Photon energy ($K=1, n=1$)	457 eV	452 eV	2.59 keV	9.40 keV
Photon wavelength ($K=1, n=1$)	2.71 nm	2.74 nm	0.478 nm	1.32 A
Tuning range ($n=1$)	$230-620 \mathrm{eV}$	$2.0-6.7 \mathrm{~nm}$	$0.319-0.835 \mathrm{~nm}$	$3.5-12 \mathrm{keV}$
Tuning range ($n=3$)	$690-1800 \mathrm{eV}$	$0.68-2.2 \mathrm{~nm}$	$0.106-0.278 \mathrm{~nm}$	$10-38 \mathrm{keV}$
Central cone half-angle ($K=1$)	$35 \mu \mathrm{rad}$	$35 \mu \mathrm{rad}$	$23 \mu \mathrm{rad}$	$11 \mu \mathrm{rad}$
Power in central cone ($K=1, n=1$) (W)	2.3	1.7	6.6	12
Flux in central cone (photons/s)	3.1×10^{16}	2.3×10^{16}	1.6×10^{16}	7.9×10^{15}
$\sigma_{x}, \sigma_{y}(\mu \mathrm{~m})$	260, 16	255, 23	320, 16	320, 50
$\sigma_{x}^{\prime}, \sigma_{y}^{\prime}(\mu \mathrm{rad})$	23, 3.9	31,9	34, 6	23, 7
Brightness $(K=1, n=1)^{a}$		9.9×10^{18}	1.3×10^{19}	5.9×10^{18}
Total power ($K=1$, all n, all θ) (W)	83	126	476	350
Other undulator periods (cm)	$3.65,8.00,10.0$	8.0, 12.5	6.8,18.3 2.	$2.70,5.50,12.8$
Wiggler Radiation:				
Wiggler period (typical) (cm)	16.0	14.0	6.1	8.5
Number of periods	19	30	30	28
Magnetic field (maximum) (T)	2.1	1.5	1.9	1.0
K (maximum)	32	19.6	12	7.9
Critical photon energy (keV)	5.1	4.0	11.4 keV	33
Critical photon wavelength	0.24 nm	0.31 nm	0.11 nm	0.38 §
Total power (max. K) (kW)	13	7.2	9.3	7.4

[^0]

Observe at sample:

- Absorption spectra
- Photoelectron spectra
- Diffraction
-

Focusing lens (pair of curved mirrors, zone plate lens, etc.)

[^0]: ${ }^{a}$ Using Eq. (5.65). See comments following Eq. (5.64) for the case where $\sigma_{\mathrm{x}, \mathrm{y}}^{\prime} \approx \theta_{\text {cen }}$.

