Options for time-resolved experiments at diffraction limited storage ring light sources

S. Di Mitri

ELETTRA SINCROTRONE TRIESTE
How short, and how intense x-ray pulses can be at DLSRs?

Overview of pulse durations, trend, users wish list

Short pulse schemes

- implementation aspects
- (in)compatibility with DLSR

Conclusions

Low-\(\alpha\)

- RF focusing (BESSY-VSR)
- Transverse deflecting cavities
- Magnetic compression
- Laser/electron slicing
Examples of accelerator-based X-ray sources:
- 0.1 – 10 keV photon energy
- # of phs. at the source
- FEL in short pulse mode

Can a DLSR target
~ sub-ps,
> 10 kHz,
> 10^8 ph/s/0.1%bw or
10^6 ph/pulse?

Lattice-invasive?
Standard user operation?
Wish list from TREES workshop

Opportunities for Time-REsolved Experiments at Synchrotron light source facilities, Trieste, December 2018

<table>
<thead>
<tr>
<th>Science Case</th>
<th>E_{ph} [keV]</th>
<th>Δt_{FWHM} [ps]</th>
<th>Pump Laser Rep. Rate [kHz]</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMO</td>
<td>0.005</td>
<td>1–5</td>
<td>10 - 100</td>
<td>PES, PECD, XAS, XES, Coincidences</td>
</tr>
<tr>
<td>Chemistry</td>
<td>0.3 - 10</td>
<td>1–5</td>
<td>1 - 1000</td>
<td>XAS, XES, PES, RIXS, XRD, CD</td>
</tr>
<tr>
<td>Biology</td>
<td>0.3 - 10</td>
<td>1–5</td>
<td>1 - 1000</td>
<td>XRD, CD, XAS, XES, RIXS</td>
</tr>
<tr>
<td>Magnetism</td>
<td>0.3 - 1</td>
<td>1–5</td>
<td>1 - 1000</td>
<td>PEEM, PCS, XAS, RIXS, XMCD</td>
</tr>
<tr>
<td>Strongly Correlated Materials</td>
<td>0.3 - 10</td>
<td>1–5</td>
<td>1 - 1000</td>
<td>XAS, RIXS, XMCD, REXS</td>
</tr>
<tr>
<td>Materials science</td>
<td>0.1 - 10</td>
<td>1–3</td>
<td>1 - 1000</td>
<td>XAS, PES,</td>
</tr>
</tbody>
</table>

Tuneable, up to 10 keV

$\sigma_t < 2$ ps (RMS)

< 1 MHz

Single bunch-turn

NO “camshaft” bunch

NO coherent harmonic generation (seeding, EEHG, etc.)
Natural e-bunch duration (2nd and 3rd generation SR)

- SOR-Ring
- ALADDIN
- NSLS X-Ray Ring
- NSLS VUV Ring
- UV/SOR 1
- ACO
- SPEAR 2
- MAX-LAB
- MAX-II
- DORIS
- Diamond
- SCEL
- Spring-8
- SLS
- ALS

What trend in 4th generation (DLSR)?

- τ_{bunch} (incl. IBS)
- τ_{bunch} (no IBS)
- ε_X (incl. IBS)
- ε_X (no IBS)

Shortening the e-bunches is in conflict with the diffraction limit

S.C. Leemann PRSTAB (2014)
Low-\(\alpha\) optics

\[\sigma_{t,R} \approx \sigma_{t,e} \propto \frac{\alpha_c}{\sqrt{V_{RF} f_{RF}}} \]

optics tuning

high RF gradient

DLSRs have natural low \(\alpha_c\)

Short pulses available at all beamlines

Control of higher order-\(\alpha_c\) with multipoles might allow the storage of short and long bunches. Not robust enough, yet.
Low-\(\alpha\) optics

\[
\sigma_{t,R} \approx \sigma_{t,e} \propto c \frac{\alpha_c}{V_{RF} f_{RF}}
\]

- optics tuning
- high RF gradient

Elettra 2.0: \(\alpha_c \approx 10^{-4}\)

\[
\sigma_{t,R} \approx 4 - 6 \text{ ps, } I_{\text{bunch}} < 25 \mu\text{A}, \text{ below microwave threshold instability}
\]

- RF peak voltage \(> 2 \text{ MV } @ 500 \text{ MHz}\)
- Low flux
 - Machine is dark for other users

Higher RF voltage shortens the bucket further

\(V_{RF} = 1.5 \text{ MV}\)

\(V_{RF} = 2.2 \text{ MV}\)

I. Martin et al., PRSTAB 2011
RF focusing (BESSY-VSR)

\[V_{\text{rf}}(t = 0) = 2\pi \left(f_{\text{nc}} V_{\text{nc}} + f_{\text{sc,1}} V_{\text{sc,1}} + f_{\text{sc,2}} V_{\text{sc,2}} \right) \]

Short & long bunches stored simultaneously
\[\sigma_t \approx 0.5 - 3 \text{ ps}, \quad I_{\text{short}} \approx 5 - 50 \text{ mA} \]

At least 1 straight section dedicated to superconducting harmonic cavities
Short bunches from Booster ring (< 35 ps fwhm)

\[\perp \text{ and } // \text{ instabilities (HOMs)} \]

Low injection efficiency
Crab cavities: “tilt-and-cancel”

\[\sigma_{t,R} \propto \left(\frac{E}{k_{cc} v_{cc}} \right) \frac{\sigma_{y,1D}}{\sigma_{y,cc}} \sqrt{\sigma_{y'}^2 + \sigma_{r'}^2} \ll \sigma_{t,e} \]

- Electrons y’–z correlation translates into radiation y–z correlation at the slit
 \[\sigma_{t,R} \approx 1 – \text{few ps, } I_{\text{short}} < 20 \text{ mA} \]

- Two long straight sections occupied
 Optics constraints (large \(\beta_y \), \(\pi \)-phase adv.)
 ⊥ and // instabilities (HOMs)
 Low injection efficiency

Scaled down to 2.4 GeV \(\rightarrow \) approximately ~9 m length required
Crab cavities: “frequency beating”

\[\sigma_{t,R} \propto \left(\frac{E}{k_{cc} V_{cc}} \right) \frac{\sigma_{y,1D}}{\sigma_{y,cc}} \sqrt{\sigma_{y'}^2 + \sigma_{r'}^2} \ll \sigma_{t,e} \]

\[E \leq 0.5 \text{ GHz, } 1.5 \text{ MV} \]
\[\text{SCRF, } 1.75 \text{ GHz, } 0.5 \text{ MV} \]

Elettra 2.0: \(\sigma_{t,R} \approx 1.5 \text{ – } 10 \text{ ps, } I_{\text{short}} \approx 8 \text{ mA} \)
Both short and long pulses stored
Electron optics constraints are relaxed

< 5% of nominal total average flux
RF cavities in one straight section

\(\perp \) and // instabilities (HOMs)
Low injection efficiency
\[\sigma_{t,R} \approx \sigma_{t,e} \propto \left(\frac{E}{k_{RF} V_{RF}} \right) R_{56} \sigma_{\delta,0} \]

\[\sigma_{t,R} \approx 0.7 - 2 \, \text{ps}, \]

Short and long bunches at full peak flux at all beamlines

Transparent to DLSR optics

Swap-out injection/extraction

SC injector, MHz stripline kickers for high repetition rate

New ring-to-booster transfer line

S. Di Mitri, JSR 2018
Angular separation (~1 mrad) of sliced electrons

Angular separation of the short radiation pulse

- Angular separation implies modification to a SR lattice
- DL e-beam emittance improves slicing efficiency

Table 1: Overview of the parameters of the BESSY II Femtoslicing source.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray photon energy</td>
<td>400-1400 eV</td>
</tr>
<tr>
<td>(linear and elliptical polarization)</td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>6 kHz</td>
</tr>
<tr>
<td>X-ray pulse length</td>
<td>100 fs</td>
</tr>
<tr>
<td>Photons on sample</td>
<td>~ 10^5 ph / s / 0.1% BW</td>
</tr>
<tr>
<td>Intrinsic X-ray / laser synchronization</td>
<td>< 20 fs short term jitter</td>
</tr>
<tr>
<td></td>
<td>< 200 fs day-to-day</td>
</tr>
</tbody>
</table>

Elettra 2.0: consider pure spatial / spectral separation of radiation

Simone.Dimitri@elettra.eu
Pure spatial separation

WIGGLER
- **Yb LASER**
 - 1 – 20 kHz
 - 3 – 5 mJ

UNDULATOR
- 1.2 m
- 1 – 20 kHz
- 0.3 – 0.7 ps

Electrons from long bunch from slice

1:1 imaging (15 m) slit

Flux Density [ph/s/mm²/0.1%bw]

from long bunch

from slice

simone.dimitri@elettra.eu
Aberration, scattering, mono

Aberrations: slope error ≤ 1 μrad

Scattering: roughness ≤ 0.5 Å

Transverse Gradient Undulator

\[\Delta \omega / \omega = 8\% \]

SNR at the detector = \(\frac{\text{slicing efficiency}}{\text{background level}} = \frac{10^{-7}}{10^{-10}} = 10^3 \)

Additional improvements by: ns-detector gating, TGU
Pros and cons

😊 **Low-emittance beam increases the SNR**

$$SNR \propto \sigma_{E,mod} \propto \frac{1}{\sqrt{\sigma_e^2(x,y) + \sigma_L^2}}$$

😊 **Coherent THz emission for laser-electrons synchronization**

🔥 **Short slice survives for 1 turn only**

- **High rep. rate** laser on consecutive bunches
- **Background** issues suggest < 10-20 kHz
State-of-the-art

- $\langle P_L \rangle \approx 50 \text{ W} @ 10 \text{ kHz}$
- $\sigma_{\tau,R} \approx 0.2 \text{ ps}$
- $10^8 \text{ ph/sec/0.1\%bw} = 10^5 \text{ ph/pulse} @ 3 \text{ keV, at the source}$
Electron-slicing

\[\Delta \theta_y \propto \frac{Q_2}{\sigma_{y,2} E_1} \]

\[\Delta t_{\text{slic}} \propto \frac{\Delta t_2}{\sin \varphi_{1,2}} \]

Short & long bunches stored simultaneously
\[\sigma_t \approx 0.01 - 0.1 \text{ ps}, \quad I_{\text{short}} \approx 0.1 - 1 \text{ mA} \]
Slicing efficiency can be higher than in laser-slicing

Background radiation limits the SNR to \(~10\)
Requires MHz e-Gun + Linac + Magnetic Compressor

Efficiency of emission w.r.t. multi-bunch average flux, @ ≤ 1 MHz

Max. Photon Pulse RR:
- 100 – 500 MHz
- 1 – 100 MHz
- 10 – 100 kHz
- 1 – 10 kHz

Somehow compatible with standard user mode

Region of interest for soft x-rays

Slicing

RF Focusing

By-Pass

Crab Cavities

Low-α

σ_{t,R} (RMS) [ps]

0.01 0.5 1.0 5.0 10
Conclusions

- All options offer short pulses at multiple beamlines
- Laser-slicing and crab cavities require dedicated beamline optics set up
- Laser-slicing, crab cavities and RF focusing require one straight section to install new hw
- By-pass is invasive on the infrastructure (injector, kickers, transfer line)

- Not considered here:
 - Direct injection from the FERMI linac (CSR, synchrotron oscillations, availability)
 - Photon pulse manipulation, e.g., fs NIR switches and CPC
Acknowledgments

C. Masciovecchio W. Barletta A. Bianco I. Cudin B. Diviacco X. Huang (SLAC)

E. Karantzoulis L. Raimondi S. Spampinati C. Spezzani A. Zholents (ANL)
Thank you for Your attention

Questions are very welcome!
Diffraction limited radiation (both x and y plane) is guaranteed up to ~keV photon energy.

Bunches shall be elongated up to ~30 ps rms for acceptable lifetime.
Comparison

<table>
<thead>
<tr>
<th></th>
<th>BESSY II (JSR 2014)</th>
<th>Elettra 2.0 (JSR 2019)</th>
<th>Elettra (Hybrid)</th>
</tr>
</thead>
<tbody>
<tr>
<td><I_b>, E_b</td>
<td>5 mA, 1.7 GeV</td>
<td>6 mA, 2 GeV</td>
<td>4 mA, 2 GeV</td>
</tr>
<tr>
<td><P_L> @ RR</td>
<td>10 W @ 6 kHz</td>
<td>30 W @ 10 kHz</td>
<td>400 – 1000 kHz</td>
</tr>
<tr>
<td>σ_t,ph</td>
<td>0.04 ps</td>
<td>0.2 ps</td>
<td>24 ps</td>
</tr>
<tr>
<td>Slicing Efficiency</td>
<td>1e-8</td>
<td>1e-7</td>
<td></td>
</tr>
<tr>
<td>Photon Energy</td>
<td>0.2 – 1.4 keV</td>
<td>1 keV (h=3)</td>
<td>0.1 – 1.7 keV</td>
</tr>
<tr>
<td>Flux @ Source</td>
<td>10^7 ph/sec/0.1%bw #</td>
<td>10^8 ph/sec/0.1%bw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^4 ph/pulse #</td>
<td>10^5 ph/pulse</td>
<td></td>
</tr>
<tr>
<td>Flux @ Sample</td>
<td>10^5 – 10^6 ph/sec/0.1%bw #</td>
<td>10^6 – 10^7 ph/sec/0.1%bw</td>
<td>~10^11 ph/sec/0.1%bw *</td>
</tr>
<tr>
<td></td>
<td>10^2 – 10^3 ph/pulse #</td>
<td>10^3 – 10^4 ph/pulse</td>
<td>10^6 ph/pulse</td>
</tr>
</tbody>
</table>

K. Holldack, JSR (2014) 21

* courtesy of S. Lizzit