

J. Campmany on behalf of ALBA team

ALBA synchrotron: the site

ALBA site

Civil works started on the 26th March 2006

ALBA management: through CELLS consortium

Main time-schedule

- 1 November 2007: Building ready for LINAC installation.
- 1 April 2008: Tunel ready for starting installation of Booster and Storage ring. Hall ready for hutch construction.
- 1 June 2008: Building finished.
- 1 October 2008: Booster and Storage accelerators commissioning. Starting of Beam line installation.
- 1 June 2009: Starts ID installation.

• 1 October 2009: Light from IDs into beamlines.

ALBA accelerators: storage ring layout

- 4 long straights
 - 3 available for IDs (1 for injection)
 - 6.95 m length
 - 12 medium straigths
 - 12 available for IDs
 - 3.21 m length
- 8 short straigths
 - 2 available for IDs
 - 2.1 m length

Name	Symbol	Unit	Value
Circumference	C	m	268.8
Energy	E	GeV	3
Horizontal Emittance	ϵ_x	nm-rad	4.3
Horizontal Tune	Q_x		18.178
Vertical Tune	Q_y		8.378
Natural Horizontal Chromaticity	C_x		-38
Natural Vertical Chromaticity	C_y		-27
Momentum Compaction Factor	α_p		8.8×10^{-4}
Second Order α_p	α_2		2.1×10^{-3}
Energy Spread	$\Delta E/E$		1.05×10^{-3}
Revolution Frequency	f_0	MHz	1.115
Horizontal Damping Time	$ au_x$	ms	4.1
Vertical Damping Time	$ au_y$	ms	5.3
Longitudinal Damping Time	$ au_\epsilon$	ms	3.1
Horizontal Partition Number	J_x		1.3
Vertical Partition Number	J_y		1
Longitudinal Partition Number	J_{ϵ}		1.7
Energy Loss per turn	U_0	MeV	1.02

Optical functions

Josep Campmany (ALBA-CELLS)

Beam sizes

Josep Campmany (ALBA-CELLS)

Source point characteristics

Name	β_{x} [m]	β_y [m]	D _x [cm]	σ _x [μm]	σ _y [μm]	σ <mark>'</mark> [μrad]	σ ' [μrad]
Long straight	11.2	6.0	14.6	270	16	20	3
Medium straight	2.0	1.3	9	130	8	47	6
Short straight	8.7	5.1	23	310	15	22	3
Bending Mag. 1	0.4	24.8	4	55	33	105	1
Bending Mag. 2	0.5	23.2	2	42	32	94	1

Insertion Device status - Nov 2006

ID	Status
IVU21	Beamlines: Macromol. Christallography, Non-crystalline diff. Specs: λu=21 mm, L=2 m, Be=0.8 T, K=1.6 Status: conceptual magnetic design finished
EU71 EU62	Beamlines: Magnetic Dichroism, Low energy spectrosc. + PEEM Specs: λu =71 mm, L=1.7 m, Be=0.93 T, K=6.2 (H polarization) Specs: λu =62 mm, L=1.5 m, Be=0.88 T, K=5.1 (H polarization) Status: technical specifications finished (1st draft)
SC-W31	Beamline: High resolution powder diffraction Specs: λu=31 mm, L=1.7 m, Bo=2.1 T, K=6.08 Status: technical specifications finished (1st draft)
W80	Beamline: X-ray absorption spectroscopies Specs: λu=~80 mm, L=1 m, Bo=1.73 T, K=12.97 Stauts: technical specifications being drafted

Requirements

Beamline	Main requirement
XALOC	Reach 12.6 keV in lowest harmonic, no gaps between 3,5,7 harmon.
NC	Check if MX is suitable for NCD. Maximize flux near 10 keV
XMCD	Reach 99 eV with circular polarization, maximum flux @ 1.1 keV
CIRCE	Reach 80 eV with circular polarization, maximum flux @ 1.1 keV
XAS	Maximum flux on sample, smooth spectrum, low power
PD	Maximum flux on sample for E>20keV

Josep Campmany (ALBA-CELLS)

Selection of periods Elliptical undulators (CIRCE+XMCD)

Technical constraints:

- Limitation in forces in all directions.
- Overall lenght of the device < 2.5 m
- Minimum magnetic gap = 15.5 mm

Scientific criterium:

- Reach 80 eV / 90 eV in circular mode
- Maximization of flux at 1,1 keV
- Procedure: simplex algorithm

Free parameters: magnetic length, magnetic block height and width

XMCD & CIRCE beamlines: periods of 71 / 62 mm are found

CIRCE

XMCD

Magnitude	Simplex	Magnitude	Simplex
Period [mm]	61.8	Period [mm]	71
W x H [mm x mm]	33 x 33	W x H [mm x mm]	34 x 30
L [mm]	1497	<i>L [mm]</i>	1650
Full period blocks	93	Full period blocks	89
Bmax, K (V)	0.88 , 5.12	Bmax, K (H)	0.93 , 6.19
Bmax, K (H)	0.64 , 3.67	Bmax, K (V)	0.71 , 4.73
Bmax, K (C)	0.51 , 2.98	Bmax, K (C)	0.57 , 3.78

Table 1. Limitation in forces produced by the device

Maximum total transversal horizontal force on one fixed array.	< 14.400 N
Maximum total longitudinal force on one fixed array.	< 14.400 N
Maximum total vertical force on the set of two lower arrays.	< 21.600 N
Maximum horizontal force lineal density on one fixed array.	9.0 kN/m
Maximum longitudinal force lineal density on one fixed array.	9.0 kN/m
Maximum vertical force lineal density on the set of lower arrays.	13.5 kN/m

Flux through selected apertures

Calculations with electron energy dispersion and phase error of ~3°

0.6 mrad H \times 0.6 mrad V

Selection of periods

In-vacuum undulators (XALOC + NC)

Hybrid or PPM?

Main requirements

- Reach 12.6 keV in lowest harmonic
- No gaps between 3,5,7 harmonics

Main characteristics

- PPM undulator
- SmCo magnet blocks.
- 5,5 mm minimum gap
- Block size: 50 x 16 mm
- Num. Periods full size: 93
- Length: 1.984 m
- Beff: 0.801 T
- K: 1.6

Flux through selected apertures

Calculations with electron energy dispersion and phase error of ~3°

 $0.29 \text{ mrad H} \times 0.1 \text{ mrad V}$

New frontiers in insertion devices – November 20th – 21st

Selection of periods SC-Wiggler for PD

Technical constraints:

- Maximum power emitted, 20 kW
- Power absorbed by the first crystal of the monochromator < 700 W
- Maximum length, 2 m
- Maximum e-beam current, 400 mA
- Vacuum chamber vertical aperture, 8 mm
- Flux optimized at H aperture of 1 mrad

Results:

- Bo = 2.1 T
- Period as small as possible (maximize N in ~2 m length)-> 31 mm, K ~ 6.

PD beamline: a period of 31 mm is feasible

Selection of periods SC-Wiggler for PD

Main requirements

- Power through monochromator not should exceed 700 W
- Maximum Bo with (K/ γ) ~ 1
 - **z** Main characteristics
- Superconducting wiggler
- 12,4 mm magnetic gap
- Period: 31 mm
- Num. Periods full size: 109
- Length: 1.720 m
- Bmax: 2.1 T
- K: 6.08

Flux through selected apertures

 $2.02\ mrad\ H \times 0.63\ mrad\ V$

Selection of periods Wiggler for EXAFS

Main requirements

- Power absorbed by the first crystal of the monochromator < 700 W
- Power to mirror < 1 kW
- Flux optimized at 1,50 mrad H and 0.25 mrad V
- Ripple @ low energies < 10%

Main characteristics

- Hybrid structure
- NdFeB magnet blocks.
- 12,5 mm minimum gap
- Block size: 109 x 56 mm
- Pole size: 75 x 43 mm
- Num. Periods full size: 26
- Length: 1.027 m
- Bmax: 1.74 T
- K: 12.96
- Ripple @ low energies ~6%

Josep Campmany (ALBA-CELLS)

Flux through selected apertures

1.5 mrad H \times 0.25 mrad V

Insertion Device status - Nov 2006

ID	Status
IVU21	Beamlines: Macromol. Christallography, Non-crystalline diff. Specs: λu=21 mm, L=2 m, Be=0.8 T, K=1.6 Status: conceptual magnetic design finished
EU71 EU62	Beamlines: Magnetic Dichroism, Low energy spectrosc. + PEEM Specs: λu =71 mm, L=1.7 m, Be=0.93 T, K=6.2 (H polarization) Specs: λu =62 mm, L=1.5 m, Be=0.88 T, K=5.1 (H polarization) Status: technical specifications finished (1st draft)
SC-W31	Beamline: High resolution powder diffraction Specs: λu=31 mm, L=1.7 m, Bo=2.1 T, K=6.08 Status: technical specifications finished (1st draft)
W80	Beamline: X-ray absorption spectroscopies Specs: λu=~80 mm, L=1 m, Bo=1.73 T, K=12.97 Stauts: technical specifications being drafted

Future plans

«Phase B» beamlines (proposals approved but not funded)

Angle Resolved Ultraviolet Photoelectron Spectroscopy

 Energy range: < 100eV
 Fast polarization switching
 High resolution in energy (△E/E~10⁻⁴)
 Electromagnetic helical undulator (normal conducting)

Surface and interface diffraction and nanoparticles
 Energy range: fixed energy ~10 keV
 Tunability is not a requirement. High photon flux peak on axis
 Possibility to operate without monochromator (ΔE/E~10⁻² or better)
 Cryoundulator (?)

Future plans

«Phase C» beamlines (not yet evaluated)

- Infra-red microscopy Bending magnet

- X-ray absorption spectrocopy (Dispersive EXAFS and/or microfocussing) Conventional wiggler

- Microfocussing

In-vacuum undulator

- Biomedical beamline

Superconducting wiggler

Josep Campmany (ALBA-CELLS)

acknowledgements

ID Physicists

Jordi Marcos

Carles Colldelram

Comp. Engineers

Fulvio Becheri

Lothar Krause

Valentí Massana

José Ferrer

Peter Readman

Zeus Martí

Drew Bertwistle

Xavier Permanyer

Fabien Rey

David Beltran