Welcome to the Fast XPS beamline!
High resolution core-level photoemission spectroscopy (HR-XPS) allows in depth investigations on the electronic and structural properties of a variety of samples that ranges between single crystals, thin films as well as new nanostructured materials. |
SuperESCA Highlights | Publications![]() Stable self-assembled monolayers on ferromagnetic 3d metals
The carboxylic group of prototypical benzoate molecules is found to ensure a thermally robust anchoring and strong electronic coupling of organic monolayers to 3d transition metals such as Ni, Co and Fe, at the same time hindering facile dissociation on these reactive surfaces. ![]() Graphene nanoblisters on nickel
Argon intercalation below a graphene layer grown epitaxially on Ni(111), followed by annealing at 940 K results in the formation of Ar-filled graphene nanoblisters sealed directly to the bare Ni surface. The process was monitored with real-time High-Resolution Photoemission Spectroscopy (HR-XPS) and the atomic structure of the blisters was studied with Scanning Tunneling Microscopy (STM). ![]() Two-dimensional self-assembly of benzotriazole
Often the physicochemical properties of a material depend on its dimensionality; for organic molecules intermolecular interactions present in the 3D solid may differ from those of 2D or 1D systems. NEXAFS, XPS, HREELS, and LT-STM measurements, combined with DFT modelling, reveal a subtle balance of interactions governing the adsorption of Benzotriazole (BTAH, C6H5N3) on Au(111). ![]() Molecular twisting, lifting and curling
Coronene molecules undergo major conformational changes during surface-assisted dissociation on Ir(111): they tilt upward, then they undergo a rotation and they settle to form a dome-shaped nanographene. ![]() Single-oriented domains of h-BN on Ir(111)
Using X-ray Photoelectron Diffraction (XPD) we show that, on the Ir(111) surface, ordinary high-temperature borazine deposition gives rise to an h-BN monolayer formed by fcc and hcp antiparallel domains, while h-BN monolayer with single fcc orientation can be synthesized by dosing borazine at room temperature followed by annealing. ![]() Nitroxides adsorption on carbon nanotubes
XPS and XAS experiments, combined with DFT calculations, revealed that the reactivity of single-walled CNTs towards NOx depends on their metallicity. Ultrapure metallic CNTs are twice more prone to NO2 physisorption than their semiconducting counterparts, while the latter induce more dissociation on the adsorbed NO2. ![]() Ultrafast charge transfer to graphene monolayers
The charge transfer (CT) rates of a localized excited electron to graphene monolayers with variable substrate coupling were investigated by the core hole clock (CHC) method with adsorbed argon. CT time (τCT) to Gr depends strongly on Gr-substrate coupling and varies from ~16 fs, for decoupled Gr, to ~2.5 ns for strong coupling. ![]() Patterning graphene with hydrogen clusters
Combined fast XPS and DFT calculations revealed the presence of two types of hydrogen adsorbate structures at the graphene/Ir(111) interface: graphane-like islands, giving rise to a periodic pattern, and dimers, which tend to destroy the periodicity. Distinctive growth rates and stability of the two types of structures allow obtaining well-defined patterns of clusters.
01234567
|
Proposal SubmissionWe invite users and collabrators to discuss their proposals with the beamline local contacts well in advance before the submission deadline. This is crucial for a careful assessment of the experiment feasibility and may lead to improvements in the proposed experimental plan. Our website provides a wealth of information on experiment feasibilty and proposal submission. For more info, please vist the user info section. |
Call for proposalsThe deadline for proposal submission for beamtime allocation from July 1st to December 31st, 2018 will be March 15th, 2018. |