Commissioning of the TTF Linac Injector at the DESY VUV-FEL

Katja Honkavaara, DESY

- Injector Layout
- RF Gun and Laser System
- Measurement of Beam Parameters
- Summary and Outlook

email: katja.honkavaara@desy.de
VUV–FEL at DESY

- Upgrade of TTF (phase 1) FEL
- SASE FEL user facility in the wavelength range from VUV down to 6 nm
- Superconducting linac based on TESLA technology, energy up to 1 GeV
 - Present stage of upgrade up to 800 MeV
- Up to 7200 bunches per bunch train with 110 ns spacing (9 MHz), repetition rate of 10 Hz
- Design electron beam parameters
 - Charge 1 nC / bunch
 - Normalized emittance 2 mm mrad
 - Peak current 2.5 kA
 - Energy spread 0.1 %
 - Bunch length after 2 compression stages 50 µm
- Laser driven RF gun
- A complete TESLA module with eight 9-cell Nb accelerating cavities to boost the beam energy to 130 – 150 MeV
 - The first 4 cavities are operated with moderated gradient (12 MV/m)
 - The last 4 cavities with higher gradient (20 MV/m)
 - During commissioning all cavities have been operated with 12 MV/m (beam energy 100 MeV)
- Bunch compressor and diagnostics section
- Injector commissioned in March – June 2004
RF Gun

- 1.5 cell L-band cavity powered by 5 MW klystron
- Two solenoid magnets
 - Main solenoid to reduce space charge induced emittance growth
 - Bucking coil to zero the magnetic field on the cathode
- Commissioned and characterized at PITZ (DESY Zeuthen)
 - 10 Hz, 3 MW, 0.9 ms
- Installed to TTF in January 2004
 - Performance similar as at PITZ
 - For convenience, operated mostly with 5 Hz and shorter RF pulse length
- Photocathode system using Cs$_2$Te emissive film on Molybdenum cathode plugs
- Cathodes prepared at INFN-LASA (Milano) and shipped to DESY

More about PITZ results:
Posters TUPOS03, TUPOS09
Talk THBOC02
Laser system

- Mode-locked pulse train oscillator synchronized to the 1.3 GHz RF of the accelerator
- Design laser pulse shape: longitudinal flat-hat profile
 - Pulse shaper not yet installed: gaussian laser shape

Diode-pumped Nd:YLF oscillator

- $E_{micro} = 16 \mu J, \quad P = 16 W$
- $E_{micro} = 200 \mu J, \quad P = 200 W$
- $E_{micro} = 30 \mu J, \quad E_{burst} = 24 mJ$
- UV (262 nm)

Max-Born-Institute, Berlin

Katja Honkavaara – FEL 2004 Conference 31-Aug-2004
Laser pulse shape

- Pulse shaper not yet installed: longitudinal shape gaussian
 - Pulse length measured with a streak camera $\sigma = 4.4 \pm 0.1$ ps (UV)

Longitudinal laser profile

Transverse shape at exit of laser

Transverse shape at the cathode
Charge measurements

- Charge measured with toroids and Faraday cups
- Charge jitter from shot to shot 1 % rms
- During commissioning we operated typically with 1-10 bunches of 1 nC

Toroid signal of 1 bunch

1.2 nC
40 ns

Toroid signal of bunch train (30 bunches, 1 MHz)
Momentum measurements

- Electron beam momentum measured in dispersive section after the RF gun
- Energy corresponding to the nominal RF power of 3 MW is 4.6 MeV
Transverse beam shape and size measurements

- Use of optical transition radiation (OTR)
- OTR system designed and constructed by INFN-LNF, INFN-Roma2 in collaboration with DESY
- Based on digital cameras
- Remote controlled, 3 different magnifications
- Resolution down to 10 µm (rms)
Energy and energy spread

- Energy after acceleration is measured using the dipoles of the bunch compressor.
- All 8 cavities of the accelerating module are operated with 12 MV/m providing a beam energy of 100 MeV.
- Energy stable within 0.1 % (8.5·10⁻⁴ rms).

- Energy spread measured from horizontal beam profile in the dispersive section of the bunch compressor.
- Uncorrelated energy spread estimated from the rising edge about 30 keV (rms), tail of about 200 keV.
Emittance Measurements

- Four monitor method using OTR monitors or wire scanners
 - During commissioning only the OTR monitors in operation
- Beam size measured at four screens in a FODO lattice of six quadrupoles (fixed quad current)
- Emittance and Twiss parameters calculated from the measured beam sizes and beam size errors using chi-square fitting
- Gun parameters as optimized at PITZ (except solenoid current)
- Bunch compressor by-passed
Transverse emittance vs. solenoid current

- Promising, but still preliminary results
- Study of systematics in beam size determination and measurement errors not completed yet
- Note: we have presently a gaussian laser pulse shape, not a flat one as at PITZ
Bunch shape and length

- Synchrotron radiation from the last dipole of the bunch compressor is guided out of the accelerator tunnel to a streak camera (FESCA 200) and a Martin-Pupplet interferometer.
- Uncompressed bunch length measured by the streak camera: 1.7 ± 0.2 mm as expected.
- Clear compression observed, when the phase of the accelerating module is changed.
- Accurate measurements of short bunches not yet possible.
 - Not enough SR photons to operate the streak camera with a wavelength filter.
- Analysis of interferometer data on going.

Bunch shape of a compressed bunch measured at TTF1 by a streak camera.

K.Honkavaara et al., PAC2003, Portland.
Summary and Outlook

- The new photoinjector of TTF linac driving the VUV-FEL has been successfully commissioned in March - June 2004
- Beam parameters mostly understood
 - Fine tuning and more accurate measurements still needed
- After short shut-down, the commissioning of the whole linac starts in September 2004
- First goal: lasing at 30 nm by the end of year 2004
- Further milestones:
 - saturation 30 – 120 nm 7/2005
 - full beam current 12/2005
 - installation 3rd harmonic and 6th module 2006
 - saturation at 6 nm 2006