Experiences from First Top-Off Injection At The Stanford Synchrotron Radiation Lightsource

Johannes Bauer, James Liu, Alyssa Prinz, Sayed Rokni

Radiation Protection Department
SLAC National Accelerator Laboratory
Menlo Park, CA 94025, U.S.A.

RADSYNCH’09
Trieste, Italy
May 22, 2009
Overview

• Introduction to SSRL
• Introduction to “Top-Off”
• Studies in Preparation for Top-Off
• Safety System
• First Tests
• SSRL Improvements
• New Tests
• Conclusions and Path Forward
Introduction to SSRL

“Stanford Synchrotron Radiation Lightsource”

• Evolved from high-energy physics synchrotron “SPEAR”

• Twice upgraded, now:
 – Storage ring SPEAR3
 – Fed by 10 Hz Linac (to 150 MeV), Booster (to 3 GeV)
 – Connected with BTS line (Booster-To-SPEAR)

• 3 GeV, 100 mA with typically 1 W injection
 usually three times a day fill from ~85 mA to 100 mA

• Going to 500 mA this year, later up to 5 W injection

• Currently 13 beamlines with 27 stations
Introduction to SSRL (cont.)
Introduction to SSRL (cont.)
Top-off, Top-Up, etc.

So far: Injection stoppers (IS) closed while filling storage ring

→ no worries about electrons and Bremsstrahlung reaching BL during injection
→ but temperature changes (alignment) affect optical components:
o.k. now, but not desired at higher currents

Top-Off: Filling storage ring while injection stoppers open

– “Infrequent injection”: 3+ times a day
– “Trickle injection”: up to once every minute
injector stays on, must stay tuned, high instantaneous charge

At other facilities “top-off” called “top-up”
Top-off, Top-Up, etc. (cont.)

Q = 5 A hr: Higher beam currents \rightarrow shorter lifetime \rightarrow higher losses
SSRL Ray Trace Studies

Beam chamber apertures and magnets constrain where beam can go

Studies by SSRL (with LBNL) to answer:

• How far towards beamline can injected beam travel with which magnet settings?
• Which magnet settings prevent beam from going past safe endpoints?

Safety Systems designed to keep beam within safe endpoints
SSRL Ray Trace Studies (cont.)

Assume all positions and angles are possible
No distinction between stored beam, injected beam on the 1st turn, and injected on subsequent turns
Energy error

Magnetic field in all elements
ID – insertion device + trim coils
BEND – dipole magnet
QF – focusing quadrupole
QD – defocusing quadrupole
CM – horiz. corrector magnet
SD – defocusing sextupole

SPEAR Apertures
Vacuum Chamber
Radiation Masks

No magnetic field
Straight line trajectories

Beamline Apertures
Vacuum Chamber
Radiation Masks

Thanks to A. Terebilo, SSRL
Radiological Considerations

(1) Long-term dose from normal operation:
Additional radiation from:
 − forward-angle Bremsstrahlung from injected beam at apertures
 − higher beam currents
Based on estimated loss rates: within 1 mSv (100 mrem) per 1000 hr limit

(2) Radiation dose due to mis-steered beam
Within bounds of safety systems,
 but such serious mis-steering expected only very rarely
Safety system defines “safety endpoint” that electrons cannot pass
Simulations \(\rightarrow \) up to 22 mSv/h (2.2 rem/h at 5 W) for dipole lines,
 \(~20\% \) less for ID lines − always radiation monitors in place

(3) Radiation due mis-steering with full safety system failure
Should never happen; VERY UNLIKELY; requires several serious failures
Simulations \(\rightarrow \) dose rate high, up to 3.3 Sv/h (330 rem/h) at 5 W for dipole lines,
 up to 0.13 Sv/h (13 rem/h) for ID lines
 but per event (<1 s) 0.74 mSv (74 mrem) with radiation monitors in place
Top-Off Safety Systems

Beam Containment System (BCS):
 - Stored Current Interlock: top-off only for >50 mA
 - Apertures: may not be modified without approval
 - Magnet Power Supply Interlocks: monitoring both current and voltage
 - Clearing Magnets: along dipole beamlines (no space for permanent magnets)
 - Dose Rate Interlock: radiation monitors tripping at 0.02 mSv/h (2 mrem/h)

Non-BCS Systems:
 - Daily Dose Interlock: rad. monitors allow max. 0.01 mSv (1 mrem) per day
 - Charge Loss Interlock: allow only certain # e- lost each day
 - Additional: Machine protection interlocks and software warnings (tight limits)
First Tests

- April to July 2008
- Interlocked BSOICs next to hutch
- Floor cleared, most data read out remotely:
 - Beam Shut-Off Ion Chambers (BSOIC) SLAC-built
 - Beamline Radiation Monitors HPI 6030/6012
- Access restricted:
 - No access during tuning
 - Electronic “chirping” dosimeters
 - Handheld dose meters
Beam Conditions for Tests

- **High-efficiency injection**

 (1 W injection, ~60-80% injection efficiency)

- **Low-efficiency injection** due to BTS mis-tuning

 (1 W, ~30-50% injection efficiency)

 Losses inside SPEAR ring at apertures

- **Zero-efficiency injection**

 (1 W, 0% injection efficiency)

 All of injected beam lost in ring due to “bump” at beamline

 (orbit moved towards edge of aperture)
Measurements with Old Injection

BL5
5 microSv/h (0.5 mrem/h) already at high-efficiency injection

BL11
radiation only at inefficient injection

injection current throughout
0.16 0.04 nA

11 microSv/h (1.1 mrem/h)

7 microSv/h (0.7 mrem/h)
Three “types” of beamlines were found:

1. **BL 4, 5:**
 - Extra radiation seen during both high-efficiency injection, up to 18.5 microSv/h (1.85 mrem/h) and low-efficiency injection, up to 30 microSv/h (3 mrem/h)

2. **BL 10, 11:**
 - No extra radiation seen during high-efficiency injection, but during low-efficiency injection, up to 16 microSv/h (1.6 mrem/h)

3. **BL 1, 2, 6, 7, 9:**
 - No or very little, < 1 microSv/h (< 0.1 mrem/h), extra radiation seen during high- or low-efficiency injection

BL 8, 12, 13, 14: Ray trace studies not yet approved; BLs not tested
Dose Extrapolations - Old Injection

Extrapolations based on measurements & operation scenarios

- No issues for any BL at 100 mA top-off operation

<table>
<thead>
<tr>
<th>BL</th>
<th>100 mA Infrequent Total dose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>microSv/1000h</td>
<td>mrem/1000h</td>
</tr>
<tr>
<td>BL 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BL 2</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>BL 4</td>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>BL 5</td>
<td>190</td>
<td>19</td>
</tr>
<tr>
<td>BL 6</td>
<td>14</td>
<td>1.4</td>
</tr>
<tr>
<td>BL 7</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BL 8</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
</tr>
<tr>
<td>BL 9</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>BL 10</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>BL 11</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>BL 12</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
</tr>
<tr>
<td>BL 13</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
</tr>
</tbody>
</table>
Dose Components

Radiation from stored beam (s), injected beam (i), traveling through wall (w), through beam pipe (b)

Term unique for top-off injection

D_{ib}

D_{sb}

D_{sw}

D_{iw}
Dose Extrapolations - Old Injection

Dose components at 500 mA trickle injection

- D_{ib} high for BL 4, 5, 10
- D_{sb} high for BL 4, 5, 11
- Lower with new injection

Stored beam dose measured with GM/BF$_3$ detector

Requires additional shielding for higher currents

<table>
<thead>
<tr>
<th>BL</th>
<th>D_{ib}</th>
<th>D_{iw}</th>
<th>D_{sb}</th>
<th>D_{sw}</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>BL 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>BL 4</td>
<td>0.93</td>
<td>93</td>
<td>0.02</td>
<td>2</td>
<td>1.32</td>
</tr>
<tr>
<td>BL 5</td>
<td>2.34</td>
<td>234</td>
<td>0.14</td>
<td>14</td>
<td>1.07</td>
</tr>
<tr>
<td>BL 6</td>
<td>0.05</td>
<td>5</td>
<td>0.05</td>
<td>5</td>
<td>0.18</td>
</tr>
<tr>
<td>BL 7</td>
<td>0.05</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.18</td>
</tr>
<tr>
<td>BL 8</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>BL 10</td>
<td>0.94</td>
<td>94</td>
<td>0.01</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>BL 11</td>
<td>0.15</td>
<td>15</td>
<td>0.04</td>
<td>4</td>
<td>1.66</td>
</tr>
<tr>
<td>BL 12</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 13</td>
<td>Ray trace study not yet approved, BL not tested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J.M.Bauer, “SSRL Top-Off Experiences”
RADSYNCH’09, May 22 2009, Page 18
SSRL Improvements to Injection

Injection system was adequate up to now; top-off raised the bar, and SSRL responded

• Studied changes in x, y, x’, y’, energy, timing, optics of injected beam

• New diagnostics added

• Better control of trajectory and optics (computer monitoring, frequent checks)

• Removal of windows in BTS line: Now one vacuum system from Linac to SPEAR
SSRL Improvements to Injection (cont.)

- Simulations show big improvement very clear in y and y’ distributions of injected beam injection efficiency 83% → 99% in simulation

- Similar simulation for optics

- Measured radiation doses went down

Thanks to J.Safranek, X.Huang, SSRL
Measurements with New Injection

- Repeat with improved injected beam (fall 2008)
- Measurements during high-efficiency injection

The four worst BLs before!

- BL 4: 1.2 microSv/h 0.12 mrem/h
- BL 5: 1.6 microSv/h 0.16 mrem/h
- BL 10,11: 0 microSv/h 0 mrem/h

Dose rates about 10 times lower than before!

Worst 1.6 microSv/h (0.16 mrem/h) extrapolated to 1000 hour/year:

\[D_{ib} = \begin{align*}
5 \text{ microSv} & \quad (0.5 \text{ mrem}) \text{ for 100 mA infrequent injection} \\
56 \text{ microSv} & \quad (5.6 \text{ mrem}) \text{ for 500 mA infrequent injection} \\
92 \text{ microSv} & \quad (9.2 \text{ mrem}) \text{ for 500 mA trickle injection}
\end{align*}
\]

(was 2.34 mSv or 234 mrem before)
Dose Extrapolations - New Injection

Dose components at 500 mA trickle injection

<table>
<thead>
<tr>
<th>BL</th>
<th>D_{ib}</th>
<th>D_{iw}</th>
<th>D_{sb}</th>
<th>D_{sw}</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 4</td>
<td>0.07</td>
<td>7</td>
<td>0.02</td>
<td>2</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>BL 5</td>
<td>0.09</td>
<td>9</td>
<td>0.14</td>
<td>14</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>BL 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 10</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>BL 11</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>4</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166</td>
</tr>
</tbody>
</table>

D$$_{ib}$ now low!

No effects on D_{sb} (to be improved by shielding; reduction to $1/10$ for higher current operation)
Measurements with New Inj. (cont.)

- Injection with low efficiency

<table>
<thead>
<tr>
<th>BR</th>
<th>Radiation Rate (microSv/h)</th>
<th>Dose (mrem/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL4</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>BL5</td>
<td>4.8</td>
<td>0.48</td>
</tr>
<tr>
<td>BL10</td>
<td>0.9</td>
<td>0.09</td>
</tr>
<tr>
<td>BL11</td>
<td>0.6</td>
<td>0.06</td>
</tr>
</tbody>
</table>

 Again lower dose rates than before

 Worst 4.8 microSv/h extrapolated to 1000 hour/year
 \[D_{ib} = 2.8 \text{ mSv (280 mrem)} \text{ at 500 mA trickle injection} \]
 (50 min to reach 100 mA)
Summary of Test & Path Forward

- Tests taught us:
 - Improved injection well enough even for 500 mA trickle injection
 - No long-term dose rate concerns for 100 mA (June 2009)

- More beamlines will be added over time

- For top-off up to 200 mA (July 2009)
 - Warning system for injection beam lattice and optics
 - Daily Dose Interlock
 - Charge Loss Interlock

- For > 200 mA (stored beam issue) (Fall 2009)
 - Additional shielding for BL4, 5 and 11
 - Mitigation systems for BL thermal damage issues

- Review for trickle charge injection & injector upgrade (>1.5 W) (beyond 2009)
Conclusions

• Tests very interesting:
 higher dose rates measured than expected

• SSRL was able to improve injection system

• With improvements top-off o.k. even
 for 500 mA trickle injection

• Stored-current dose needs to be addressed for >200 mA

• Top-off will start soon, later going to higher currents