
EPICS Server-Level API Developers Survey

J. O. Hill, LANL, USA

Abstract

The Experimental Physics and Industrial Control System
(EPICS) [1,2,3,4,5,6] collaboration has more than 100
members worldwide. This collaboration has a joint open-
source software development initiative to produce
modular control system software components. A new
network server side application programmer’s interface
(API) for EPICS described earlier1 was expected to
increase the utility and flexibility of the EPICS software.
We briefly describe some of the many applications that
are now using this API, and how it has led to new uses for
many components in the EPICS software distribution.

1 INTRODUCTION
In the past the EPICS server and the EPICS function-

block-based process control system were inseparable.
After inserting a well-defined API between these
components it was hoped that EPICS could be used with a
variety of plug-compatible data sources that we have
labeled as “server tools” (Figure 1).

Figure 1: Server Level API Adapts EPICS to New Applications

A previous paper [7] envisioned that certain situations
would be appropriate for creation of a server tool: an
alternative data source leverages the mature EPICS client
side tools[2] (interoperability), a client computed result is
needed by other clients (modularity), or clients need to
access critical servers via a proxy server (scalability). It
was also hoped that this new API would promote sharing
of components between sites, facilitate integration
between dissimilar systems, and require only a modest
amount of effort on the part of the server tool developer.
In October of 1998, with its objective to determine the
validity of the previous paper’s intuition, a survey was
sent out using the EPICS Internet mail list. Server tool
developers were asked the following questions: are you
using the EPICS server library; what is your application;
and what is your overall impression of the software so

far? This paper will first look at the depth of the server
tool applications responding, attempt to summarize the
comments in the survey responses received, and it will
briefly summarize our reaction to the issues raised by the
survey respondents.

2 SERVER TOOL APPLICATIONS
The developers were asked about the nature of the

server tool applications that they were designing. There
were 18 developers responded to the survey, and among
these, 22 independent server tool applications were
developed (Table 1). These server tools were running on 8
different operating systems: Sun-Solaris, HP-UX,
LINUX, SGI-IRIX, Microsoft-WIN32, DEC-VMS,
Apple-MAC, and WRS-vxWorks. From the range of
applications in the response, and the diversity of operating
systems employed, it can be safely concluded that the
software is general purpose and portable. Ports to new
platforms were performed by some of the survey
respondents, and not always by the library developers.
This appears to confirm that the server library software is
properly organized.

 Table 1: Server Tool Applications

Developer’s Site Server Tool Developed
APS-BESSRC-CAT TCL / TK interface (planned)

APS-SRI-CAT NT based Digital Camera

APS-SRI-CAT Motion Control

APS-ASD EPICS Proxy (Concentrator)

APS-IMCA-CAT,
APS-MR-CAT

MX Data Acquisition Toolkit Gateway
(development in progress)

PSI Video (planned)

ORNL Low Cost Serial IO

MIT-BATES Facility Control System Gateway (planned)

SLAC-SPEAR SLAC-SPEAR Control System Gateway

SLAC-PEPII SLAC-PEPII Control System Gateway

BaBar Detector Data Acquisition System Gateway

DESY DOOCS Control System Gateway

KEKB LINAC Control System Gateway

KECK Telescope Command Processor Subsystem Gateway

KECK Telescope Telescope Simulator

LANL-LEDA IDL (4th Generation Language)

LANL-LEDA Active X conversant programs such as
LabView

LANL-LEDA NT based Digital Camera

LANL-LEDA Directory Service

LANL-LEDA RF Fault Log

MSU-NSCL NSCL Control System Gateway

MSU-NSCL Modicon PLC Gateway

Other Control systems

3rd Party Tools
Alternative Data Sources

Server /
EPICS IO Controller

Client Side Tools

Client Library

Before

Client Side Tools

Client Library

Server Library

EPICS IO Controller

Server
API

After

Server
Tools

International Conference on Accelerator and Large Experimental Physics Control Systems

548

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

3 IMPRESSIONS OF THE SOFTWARE
A limited set of the respondents provided feedback on

their overall impression of the software. Their comments
have been included condensed, but otherwise unabridged,
in order to better support the accuracy of the summary
conclusions below. Table 2 is a complete list of comments
on the software. Table 3 contains all of the comments
received concerning the documentation. After closely
examining these comments some conclusions can be
drawn about the majority opinions of the developers. The
biggest weakness of the software appears to be the
complexity and efficiency of our data descriptor object
based mechanism for passing data. Nevertheless, while
some of the comments indicated that developers perceive
that certain aspects of the API are unnecessarily complex,
there also appears to be a general consensus that a server
tool can be created within a modest expenditure of effort.
From the responses here, and also the lack of negative
responses, it appears that there is general agreement
among the server tool developers that the software is
useful and reliable. From the survey responses we also
conclude that there are improvements that need to be
made to the documentation.

Table 2: Impressions of the Software
Developer’s Site Comments Returned
APS-BESSRC-CAT The run time type conversions possible in

the data descriptor library are rarely
necessary. The deletion policy for server
objects is confusing. A simple, lightweight,
and possibly C++ template based, process
variable class implementation is desired.

APS-SRI-CAT The interface is a bit complex, but I am not a
C++ expert. The server API leverages the
large amount of software written for the PC
into EPICS. The library has been reliable.

APS-IMCA-CAT,
APS-MR-CAT

The software is a reasonably straightforward
and understandable package.

ORNL An excellent resource that has provided a
high quality general-purpose solution for a
few man-weeks of effort.

SLAC - PEPII Our server tool was easy to implement, but
the data descriptor library was unnecessarily
complex.

BaBar Detector Our experience has been pretty smooth, but
difficulties occurred when using the string
class in the data descriptor library.

KECK Telescope The software was generally reliable and
efficient, but problems occurred with large
arrays* and when asynchronous IO
completed after the initiating client
disconnected*

* Author’s note: patches for both of these
problems have been installed into the
distribution

MSU-NSCL An inexpensive and low effort alternative.

Table 3: Impressions of the Documentation
Developer’s Site Comments Returned
APS-BESSRC-CAT very helpful
MSU-NSCL the source code embedded in the

documentation didn’t compile.

SLAC-PEPII good server library documentation

NMSU nothing that we don't understand so far

KECK Telescope more documentation desired, but LANL
web documentation has not yet been
consulted

4 OUR REACTION TO THE SURVEY
Concise, efficient, and backwards compatible API

alternatives to the current C++ data descriptor object
based mechanisms for passing data are under
investigation. A C++ abstract base class is the current
leading candidate for this role. Documentation upgrades
are also mandated.

5 CONCLUSIONS
The depth of applications in the response indicates that

the software is general purpose and portable. From the
comments returned we conclude that developers perceive
that data description aspects of the API are unnecessarily
complex, but nevertheless, a majority of the developers
agree that server tools can be developed within a modest
amount of effort.

As envisioned during ICALEPCS 95, the EPICS server
level API has facilitated increased sharing of software
components between sites, increased our freedom to
choose and combine components of EPICS, and made it
possible to integrate EPICS with a wide range of 3rd party
tools and dissimilar systems. This has transformed EPICS
beyond its distributed process control system roots, and
prepared it for supporting roles integrating the wide range
of dissimilar systems omnipresent in complex projects.

REFERENCES
[1] M. Knott et al, ‘‘EPICS: A Control System Software

Co-development Success Story'', ICALEPCS’93,
Berlin, 1993.

[2] W. McDowell et al., ``EPICS Home Page'',
``http://www.aps.anl.gov/asd/controls/epics/EpicsDoc
umentation/WWWPages/EpicsFrames.html''.

[3] L. Dalesio et al. ``The Experimental Physics and
Industrial Control System Architecture: Past, Present,
and Future'', ICALEPCS’93, Berlin, 1993.

[4] L. Dalesio et al, ``The Los Alamos Accelerator
Control System Database: A Generic Instrumentation
Interface'', ICALEPCS’89, Vancouver, 1989.

[5] J. Hill, ``Channel Access: A Software Bus for the
LAACS'', ICALEPCS’89, Vancouver, 1989.

[6] J. Hill, ``EPICS Communication Loss Management'',
ICALEPCS’93, Berlin, 1993, pp 218-220.

[7] J. Hill, “A Server Level API for EPICS”,
ICALEPCS’99, Chicago, Oct 1995.

549

