
EPICS: PORTING iocCORE TO MULTIPLE OPERATING SYSTEMS

M. Kraimer, Advanced Photon Source, Argonne National Laboratory, Argonne, IL USA

Abstract

An important component of EPICS (Experimental
Physics and Industrial Control System) is iocCore, which
is the core software in the IOC (input/output controller)
front-end processors. Currently iocCore requires the
vxWorks operating system. This paper describes the
porting of iocCore to other operating systems.

1 INTRODUCTION
Originally IOC (input/output controller) meant a

VME/VXI-based system that interfaced to various
hardware interfaces. Today it is also used on non-VME
systems as well as software-only systems. It does,
however, still require the vxWorks operating system. The
goal is to remove the dependency on vxWorks.

The IOC software can be divided into the following
categories:
• vxWorks - A proprietary real-time operating system
• iocCore - Core EPICS software, described below
• Hardware support - Support for specific hardware

An EPICS IOC allows extensible record/device/driver
support, i.e., there is a clear separation between iocCore
and hardware support. Thus iocCore can be used without
hardware support and/or support for non-VME based
hardware. Beginning with the 3.14 releases, iocCore will
be implemented via Operating System Independent (OSI)
libraries.

iocCore includes the following components:
• Database locking, scanning, and processing
• Channel access client and server
• Standard record types and soft device support
• Access security
• Other non-hardware specific components

The port is based on the following assumptions:
• All hardware support will be built separately. Thus it

does not need to be ported.
• iocCore requires a multithreaded environment.

OSI components are defined such that:
• The vxWorks implementation has minimal overhead

compared to vxWorks specific calls.
• The components can be implemented via a

combination of POSIX.1, POSIX.4 (POSIX Real
Time), and POSIX Threads (pthreads).

For components that require a different implementation
for different environments, the implementation may be
via header and/or source files as long as user code can
code to the “prototype” header files.

2 OVERVIEW OF CHANGES

2.1 Replacements for Existing vxWorks and
EPICS Components

The following OSI libraries replace vxWorks libraries.
• osiClock - tickLib, sysLib
• osiFindGlobalSymbol, registry - symFindByName
• osiInterrupt - intLib
• osiRing - rngLib
• osiSem - semLib
• osiThread - taskLib
• osiWatchdog - wdLib

Each osiXXX interface defines only the functions needed
by iocCore rather than all the features of the vxWorks
libraries.

2.2 Registry

vxWorks provides a function, symFindByName, that is
used to dynamically locate global data and functions.
This facility is unique to vxWorks and is not easily
recreated in other environments. Instead a facility is
provided to register and find pointers to functions and
structures. This leaves the problem of registering
everything currently located via calls to
symFindByName. This is solved via a Perl script that
generates a C function, which registers the record, device,
and driver support. dbLoadDatabase calls this function
after loading the database.

2.3 Build Environment

The build environment is different. The principal
features are:
• Each source directory has a single Makefile. This

builds for both the host and for all IOC targets.
• The new configuration files are located in

base/configure.
• The existing base/config is still present so that

existing applications still build without major
changes.

2.4 task_params.h

This file, which defines vxWorks-specific options for
iocCore tasks is no longer part of iocCore. Instead
osiThread provides generic options.

International Conference on Accelerator and Large Experimental Physics Control Systems

33

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

2.5 vxWorks Shell

If the target is not for vxWorks, the vxWorks target
shell is not available. iocInit, dbLoadRecords, etc. must
be called directly by main or the equivalent. The
vxWorks debugging environment is not present although
a nicer one using xgdb may be available.

2.6 Interrupt Level

The vxWorks intLock/intUnlock routines are an
essential part of base. For example any code, including
interrupt routines, can call callbackRequest. Most
operating systems do not allow such tight coupling
between interrupt routines and user processes.
osiInterrupt is provided to solve this problem. For
operating systems like vxWorks, in which everything
runs in a shared memory, multithreaded kernel
environment, an implementation of osiThread must be
provided. For other operating systems, e.g., winNT, Unix,
Linux, a generic version is provided. The generic version
uses a global lock, where global means global to the
process.

3 STATUS OF PORT

3.1 Work Completed

• All code except Channel Access, Sequencer, and
vxWorks-dependent device and driver support has
been converted to use the new libraries.

• The registry has been implemented.
• The example generated by makeBaseApp has been

successfully tested on vxWorks.
• A separate subdirectory base/src/vxWorks has been

created and all vxWorks-specific code moved to this
subdirectory. This makes it possible for existing
vxWorks IOC applications to use the new system
with only minor changes to the applications.

3.2 Work Remaining

• Implement osiSem and osiThread for other
platforms. If the implementation is done via POSIX
(including POSIX Real Time and POSIX Threads)
then many platforms can be supported. William
Lupton (KECK) has already developed an alpha
version.

• Convert Channel Access (client and server) to use
OSI calls. This will be done by Jeff Hill (LANL).

• Convert the sequencer to use OSI calls. William
Lupton has already implemented an alpha version.
Also the sequencer will be unbundled from base.

• Resolve problems about single thread vs multi
threaded environments.

• TEST TEST TEST

4 PROTOTYPE DEFINITIONS
For a particular operating system, each function may

be implemented as desired, but the final result must
appear to user code like the definitions in this section. For
example, functions can be implemented via macros
defined in a header file that replace the generic header
file.

For each OSI definition, a vxWorks-specific version is
available that causes no or almost no performance loss vs
direct vxWorks calls. For all except osiSem and
osiThread, a generic version is supplied. osiSem and
osiThread must be implemented for each operating
environment. These can be implemented via POSIX
(including POSIX Real Time and POSIX Threads). Since
only osiSem and osiThread must be implemented for
each operating system, they are the only libraries that will
be discussed here.

4.1 osiSem
typedef void *semId;
typedef enum {
 semTakeOK,semTakeTimeout
} semTakeStatus;
typedef enum {
 semEmpty,semFull
} semInitialState;

semId semBinaryCreate(
 int initialState);
void semBinaryDestroy(semId id);
void semBinaryGive(semId id);
semTakeStatus semBinaryTake(semId id);
void semBinaryTakeAssert(semId id);
semTakeStatus semBinaryTakeTimeout(
 semId id, double timeOut);
semTakeStatus semBinaryTakeNoWait(semId id);
void semBinaryFlush(semId id);

semId semMutexCreate(void);
void semMutexDestroy(semId id);
void semMutexGive(semId id);
semTakeStatus semMutexTake(semId id);
void semMutexTakeAssert(semId id);
semTakeStatus semMutexTakeTimeout(
 semId id, double timeOut);
semTakeStatus semMutexTakeNoWait(
 semId id);
void semMutexFlush(semId id);

Mutual exclusion semaphores
• Must implement recursive locking.
• Should implement priority inheritance and be

deletion safe.

For POSIX
• Binary can be implemented easily as a condition

variable.
• Mutex can be implemented via various POSIX

facilities. Takes careful thought. A pthread
mutex is not sufficient.

For vxWorks:
• the entire implementation of Binary and Mutex

is via macros in a vxWorks specific header file.

34

On a single-threaded environment
• Mutex is implemented as though the caller always

has access to the resource.
• Binary issues an error message and terminates if an

attempt is made to create an instance.

4.2 osiThread
#define threadPriorityMax 99
#define threadPriorityMin 0

/*some generic values */
#define threadPriorityLow 10
#define threadPriorityMedium 50
#define threadPriorityHigh 90

/*some iocCore specific values */
#define threadPriorityChannelAccessClient 10
#define threadPriorityChannelAccessServer 20
#define threadPriorityScanLow 60
#define threadPriorityScanHigh 70
int threadGetOsiPriorityValue(
 int ossPriority);
int threadGetOssPriorityValue(
 int osiPriority);

typedef enum {
 threadStackSmall,
 threadStackMedium, threadStackBig
} threadStackSizeClass;

unsigned int threadGetStackSize(
 threadStackSizeClass size);

typedef void *threadId;
threadId threadCreate(
 const char *name,
 unsigned int priority,
 unsigned int stackSize,
 THREADFUNC funptr,void *parm);
void threadDestroy(threadId id);
void threadSuspend(threadId id);
void threadResume(threadId id);
int threadGetPriority(threadId id);
void threadSetPriority(
 threadId id,int priority);
void threadSetDestroySafe(
 threadId id);
void threadSetDestroyUnsafe(
 threadId id);
const char *threadGetName(
 threadId id);
int threadIsEqual(
 threadId id1, threadId id2);
int threadIsReady(threadId id);
int threadIsSuspended(threadId id);
void threadSleep(double seconds);
threadId threadGetIdSelf(void);
void threadLockContextSwitch(void);
void threadUnlockContextSwitch(void);
threadId threadNameToId(
 const char *name);

Thread priorities are assigned a value from 0 to 99. A
higher value means higher priority.

threadGetStackSize can be called to get one of three
default sizes. This should be done whenever possible.
Code can specify any size it desires, but such code is not
portable.

5 REGISTRY
iocCore currently uses symFindByName to

dynamically bind the following:
• record/device/driver support

The registration facility provides a type safe and easy
to use alternative to symFindByName.

• subroutine record subroutines
An easy to use solution must be developed.

• initHooks
A new implementation of initHooks is now provided.
It provides a routine initHookRegister. This MUST
be called by any routine that wants to be called
during initialization.

• drvTS.c
This has been moved to base/src/vxWorks. Thus for
now it is only supported on vxWorks

• Other hardware or vxWorks-dependent code.

Thus only the first two items need a solution.
The basic idea is to provide a registration facility. Any

storage meant to be “globally” accessible must be
registered before it can be accessed by other code.

A Perl script is provided that reads the xxxApp.dbd file
and produces a C file containing a routine
registerRecordDeviceDriver, which registers all
record/device/driver support defined in the xxxApp.dbd
file.

Functions are provided to register (registryADD) and
find (registryFind) a void pointer. Using these functions,
typesafe functions are provided to register:

• record types,
• device support, and
• driver support.

6 ACKNOWLEDGMENTS
The changes to the EPICS build system for the iocCore

port have been made by Janet Anderson (APS) and Jeff
Hill (LANL). Janet made the final major set of changes
that were needed. Jeff had previously created operating
system indepenent libraries for several EPICS
components used on workstations.

This work is supported by the the U.S. Department of
Energy, Office of Basic Energy Sciences, under Contract
No. W-31-109-ENG-38.

7 REFERENCES
A list of EPICS documentation can be found at:

http://csg.lbl.gov/EPICS/RecommendedDocs.html

35

