
FERMILAB BEAMS DIVISION ALARMS PROCESSING SYSTEM

Seung-chan Ahn
Fermi National Accelerator Laboratory

PO Box 500
Batavia, IL 60510, USA

Abstract

ALARMS, the distributed alarms processing software for
the Fermilab Beam Division is described in detail. Also
reported is the experience with this new alarm processing
software that has been operational for more than a year.

1 OVERVIEW OF THE SYSTEM

ALARMS processes the alarm messages from various
devices that collectively monitor and control the
Fermilab accelerator operations [1]. An alarm is a generic
term indicating anything from the report of a device
failure that stops the beam to a mere informational
message that can be removed from display after a few
seconds without much consequence. Perfect ALARMS
will deliver all these messages to the intended
consumers.

 ALARMS is a system of distributed software
components in an OS neutral environment. An obvious
benefit of distributed computing is one can modify a part
without affecting the rest of the system. The main part of
ALARMS can be divided into 4 different functional
units. Their tasks are (1) interaction with front-end
computers, (2) database look-up for device properties, (3)
build alarm messages, and (4) distribute messages to
interested parties. While the first 3 tasks are performed in
3 separate processes on an UPS backed up node the last
component is distributed over 50 plus nodes. The
division of tasks roughly coincides with the division of
communication methods and sources. See schematics
below for illustration.
 The auxiliary part consists of a suite of utility programs
that inspect the alarms, monitors the ALARMS processes
itself, and provides various alarms statistics for
applications. Some components can talk with other
programs over the network. The suite also includes a
Java application program for alarm display that
communicates with distributor nodes (above task 4), and
with front-end computers.

 ALARMS exploits the benefits of distributed computing
at all levels. Each component of ALARMS makes use of
threads extensively. The utilization of threads helps write
a cleaner and easily maintainable code. However, it
demands a careful design of the software to maintain data

consistency among different computers, different

processes on a computer, and different threads within
a process. To insure smooth flow of program and
prevent process lock-up, it is necessary to assign
thread priorities properly and control bi-directional
inter-process I/O.

2 ALARMS_DRIVER

ALARMS_DRIVER directly communicates with
front-end computers via the Fermilab developed
ACNET protocol. Only one copy of DRIVER runs
on a designated node. DRIVER initiates the whole
ALARMS system activities and the flow of alarm
messages.
 DRIVER launches 2 subprocesses and establishes
pipe connections among all; ALARMS to process
alarms, and ALARMS_DB to access the device
database. DRIVER exits then either of the two
subprocesses exits.
 DRIVER initialization proceeds as follows. After
successfully launching the 2 subprocesses DRIVER
waits for ALARMS to initiate the front-end nodes
alarm initialization. When ALARMS is prepared to
process alarms data, it instructs DRIVER to request
all front-ends to refresh local alarms data. DRIVER
waits for all front-end nodes to respond but it does
not assume all front-ends are alive. Responding
front-ends are immediately registered as valid. All
subsequent alarm data from them are passed to
ALARMS. DRIVER makes only a few more
attempts to wake up the front-ends.
 DRIVER ignores alarms from unqualified nodes.
They are often test or obsolete nodes that emit at best
uninteresting alarms that should not bother the

ALARMS DAEMON’s

App’s

TCP/IPpipe

TCP/IP

MCast

pipe

Front-end Devices

ACNET

ALARMS_DB

DRIVER

International Conference on Accelerator and Large Experimental Physics Control Systems

66

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

accelerator operation. When a new front-end node is
added to the system a separate program notifies DRIVER
to reload the list of valid front-end nodes from database.
For this purpose and possibly others DRIVER always
leaves a TCP socket open.
 DRIVER holds data when ALARMS has a large
backlog of alarm data to process. When situation doesn’t
improve and as a result DRIVER holds significantly
large number of alarm data DRIVER instructs front-ends
to hold data to themselves. This provision is made as an
insurance policy but it was never used in practice even in
the case of power failure and recovery.

3 ALARMS

The ALARMS process builds an alarm message based on
the device alarm data that front-end node assembled, and
the corresponding database information obtained from
ALARMS_DB. ALARMS multicasts the message using
UDP protocol. ALARMS listens to itself but it does not
check whether the multicast was successful. Instead
ALARMS listens to DAEMON multicast messages.
 ALARMS process assigns a unique sequential number
to each alarm including user requests for specific actions.
This sequential number is useful in particular to maintain
data consistency with other components of ALARMS
system. ALARMS logs all alarm data both in its raw and
processed formats. The redundancy of alarm data is
justified considering the low cost of storage devices.
 ALARMS process also maintains a global shared
memory backed up by a physical file. The shared
memory contains the most recent 20000 alarms that are
readily available for other processes. The same shared
memory also holds process state information that
external process can interrogate.
 ALARMS initializes itself as follows. It first establishes
shared memory and initializes all the counters. Then it
sends a single BIG CLEAR message to DRIVER, which
subsequently notifies all front-ends to reset the alarm
data.
 To facilitate the proper initialization of DAEMON
processes ALARMS exchanges messages with
DAEMON using TCP/IP protocol.
 Several threads of ALARMS run concurrently. The
alarm receiver and message builder threads are set at the
highest priority. All the other threads including the
logging thread at a normal priority. All threads are
cooperative, i.e., they yield whenever possible and they
certainly yield while blocking for I/O.
 ALARMS process logs alarms data at a fixed time
interval or fixed sequential number interval, whichever
comes first. Usually the data logging is done at every few
minutes.

4 ALARMS_DB

ALARMS_DB process makes database queries by
calling Fermilab controls library CLIB routines, which in

turn make SQL queries to central database engine.
CLIB caches database query results internally, and
subsequent CLIB calls to the same device is
equivalent to a mere memory look-up and hence
extremely fast. Since BB communicates with only
ALARMS and DRIVER via pipes, and no other
interrupt can possibly happen, there is no reason to
thread DB. The main program is encased in a single
infinite loop centered on the pipe input.
 DRIVER registers itself as a listener of the database
changes at the program start-up. Upon the receipt of
ACNET messages of device database changes,
DRIVER notifies ALARMS_DB of such
happenings. At that point ALARMS_DB clears the
cache for the affected devices. ALARMS_DB device
database is current at all times. The main device
database engine we use is Sybase.

5 ALARMS_DAEMON

ALARMS_DAEMON distributes alarm messages to
application programs via TCP. It can serve up to 32
applications at a time. The base data structure of
DAEMON is identical to that of ALARMS. In fact
the same source code is compiled into DAEMON
and ALARMS. DAEMON runs on multiple nodes as
a background batch process. On VMS, upon exit
DAEMON sends e-mail to the program keeper and it
restarts itself in the exit handler by submitting the
batch job.
 At startup, DAEMON is not synchronized with
ALARMS. It establishes the data consistency with
ALARMS as follows. First it requests ALARMS for
active alarms. While ALARMS is sending active
alarms stored in a queue, ALARMS may have
received more alarms from the front-ends, or some
alarms may have been cleared. Hence the
initialization incomplete until the first multicast
message is received, when DAEMON determines
whether it missed any alarms (both good and bad). If
necessary, DAEMON makes another request for
more messages to fill up the message gap.
 There is a different kind of DAEMON that
maintains a complete data consistency with
ALARMS (current data consistency plus history
data). This DAEMON collects history data and sends
out e-mail at a regular time. It is designated in a
command file shared by all DAEMONs.
 UDP being a connectionless protocol, some
messages are lost. DAEMON detects the occurrence
of missing messages by checking the sequential
number of each alarm. As DAEMON discovers
missing alarms it multicasts a request for
rebroadcast. To reduce the network traffic, up to 2
DAEMONs send UDP multicast messages for an
identical request. While they may be in different
status of message reception, they attempt
cooperation. DAEMON does not respond to other
DAEMON messages in any other active fashion.

67

 DAEMON maintains an open TCP socket for
applications and creates a new thread for each
application. Application programs send the front-end
commands to DAEMON. DAEMON checks the validity
of the requester and the content of command, then
assembles the message and multicasts it. ALARMS picks
it up and passes it to DRIVER, which assembles a correct
ACNET message and sends it to the appropriate front-
ends.

6 STATUS AND EXPERIENCES

Presently all the main ALARMS components run as
detached background processes under VMS operating
system. At the moment DAEMON was ported to two
Unix platforms Solaris and FreeBSD. ALARMS is not
ported due to lack of a complete CLIB equivalent in Unix
systems.
 The overall ALARMS has been operational for more
than a year. On a typical day ALARMS processes about
10,000 alarms. About half of all alarms are caused by a
couple of dozen devices.
 Typical run time of ALARMS is about 2 weeks. That is,
in about 2 weeks some kind of unplanned happenings
(network disruption, inter-process communication error
or database lookup failure) cause ALARMS terminate.
When ALARMS stops running DAEMON processes
recognize this fact immediately because each DAEMON
keeps its own heartbeat generator that checks ALARMS
heartbeat. The application programs connected to
DAEMON sense the loss of heartbeat and take proper
actions.
 Accelerator controls front-ends come in a wide variety
of flavor ranging from most modern components to
legacy systems and ALARMS accommodates all.

7 OUTLOOK

 The notion of distributed ALARMS resonates with the
concept of OS neutrality. Along with DAEMON, porting
the entire ALARMS system to Unix and NT would be a
logical next step. With the advent of the Java language
and its environment this next step was simple and easy.
 As a start we developed an alarm display in Java under
NT. It is a user configurable Java application that
combines the functionality of the VMS alarm display and
its related programs.
 Another Java program is being designed for graphical
presentation of alarm history data. The Java program
runs as both applet and application.
 For some critical devices with high priorities it is not
enough to merely display their alarms. Machine operators
do not necessarily look at the alarm display all the time.
To grab the operator attention, the program needs to
enunciate the alarm and operator must acknowledge it.
We are currently implementing a voice synthesizer for
the alarm display using IBM ViaVoice.

 We are also investigating the feasibility of using
Mathematica as a graphics engine for sophisticated
graphical presentations of alarm data. The JDK for
Mathematica and ViaVoice are currently in alpha. It
may be necessary to adjust the programming details
or even the design itself from time to time as the
technology matures, but we believe that we are in the
right direction in this venue.

8 REFERENCE

[1] S. Ahn, “Fermilab Tevatron Alarms Processing
System”; ICALEPS ’97 Beijing, 1997.

68

