
TOOLS FOR APPLICATION MANAGEMENT AT JEFFERSON LAB*

S. Schaffner, M. Bickley, A. Hofler, M. Keesee, D. Wetherholt, K. White, Thomas Jefferson
National Accelerator Facility, Newport News, Virginia, USA

* Work supported by the U.S. Department of Energy, contract
DE-AC05-84ER40150

Abstract

The Software Controls Group at Thomas Jefferson
National Accelerator Facility (Jefferson Lab) is
responsible for slow controls for many Jefferson Lab
facilities. The Experimental Physics and Industrial
Control System (EPICS) is used as the basis of these
control systems. The Controls Group developed and
maintains over 150 control applications running on over
100 I/O controllers (IOCs). With so many applications, it
becomes increasingly difficult to maintain and upgrade
older applications and still produce new applications. The
difficulties became especially apparent this year as a
major effort was undertaken to upgrade all control system
applications to the newest versions of EPICS and
VxWorks. Over the past few years, the Controls Group
has worked on constructing a framework within which to
develop and maintain applications more efficiently. As the
framework has matured and applications have been
structured to fit the framework, a number of tools have
been developed to help with software maintenance and
upgrades. This paper will describe some of these tools and
how they are used to enhance the maintainability and
reliability of the control system.

1 APPLICATION CREATION

1.1 File System Organization

At Jefferson Lab, the file system for IOC applications is
organized into two source areas, one for test code and
another for production code, a single Concurrent Versions
System (CVS) repository for version control, and an area
for EPICS IOC core. There are multiple production areas
for object code and IOC boot directories, including a
development test area. The source areas, CVS repository,
EPICS source, and the development test area are
organized into a “fiefdom” which means that they share a
Unix file server and are on their own subnet. The other
production object areas are in separate fiefdoms. The
system is organized in this manner to minimize
disruptions in one fiefdom if parts of a separate fiefdom
fail or are taken down for maintenance. The IOC
application tools have been designed to help manage the
development and installation of software across fiefdoms.

1.2 Application Versioning

All IOC applications are “versioned.” For the source
areas this means that all source code and the IOC startup
scripts associated with a running version of an application
are stored in the CVS repository and tagged with the same
version number. Object code and operational IOC startup
scripts associated with a tagged source version are stored
in a subdirectory named by version in the production
object areas for the various fiefdoms.

In practice, at least two versions of object code are kept
in the production area: the current operational version and
the rollback version (the version immediately preceding
the current operational version). The rollback version has
typically been in operations for weeks or months and has
been “proven” to run correctly. The current operational
version probably includes new or upgraded features and
may cause problems in operations since it is sometimes
difficult to adequately test all new features in the test area.

Some of the tools described below are used to help the
software group quickly and reliably “roll out” a version of
an IOC application which is causing trouble and restore
the most recent operationally proven version until the
developer has time to fix the problem. This has proven to
minimize the impact on operations and improve the “up
time” of the accelerator (a very important metric for our
lab).

1.3 Application Types

Application creation begins with a request from a
“customer.” The request is analyzed and the level of effort
assessed. A software engineer (developer) or team of
developers is assigned to work on the project. The
developer analyzes the requirements and specifications,
determines what types of code need to be developed
(driver code, device support, EPICS databases, etc.) and
breaks the system down into one or more IOC
applications.

IOC applications are classified into three types. The
first type contains EPICS databases. These applications
may or may not contain custom device/driver support.
They are typically quite specialized to a particular control
function or control device. The second type contains only
device/driver support and is typically developed for
commercial off-the-shelf control modules. These
applications may be used by one or more EPICS database

International Conference on Accelerator and Large Experimental Physics Control Systems

143

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

applications. The third type contains only EPICS record
support and is used for custom records that are shared by
multiple applications.

The directory structures, makefiles, IOC startup scripts,
and installation procedures are all slightly different for
each application type. A set of application creation scripts
(mkNewapp, mkNewdev, and mkNewrec) has been
developed for each application type.

Each script creates a source directory structure in the
development source area. The directory structure is named
by application and by default, the working subdirectories
are placed in version 1-0 underneath the application name.
A CVS module for the application is created. Template
makefiles, EPICS .dbd files, and application IOC startup
scripts are copied into the appropriate subdirectories. Soft
links are made in the source directory to the production
test area for later use by the installation procedure.

The template makefiles contain targets to create and
install object code and IOC startup scripts to the various
production areas. The developer adds source module
names and install locations. The IOC startup scripts are
kept in the application source area so they can be CVS’d
and tagged along with the application source code.

 At this point, the developer is ready to write the
application source code, customize the template makefiles
and IOC startup scripts appropriately, and test the
application in the development test area. At this time the
developer also sets up the installation procedure to install
object code to the appropriate production area(s).

2 INITIAL INSTALLATION AND
CHECKOUT

2.1 Move to Source Production Area

Before installing the application the developer uses the
“CVS and Release Notes ” tool, to store the application
source code in the CVS repository, tag it with the version
number, and write the application description. The
application description is automatically converted to html
format and stored in a location accessible by another tool,
the “LLAPP Version Info” tool, which is a custom Web
browser described later.

Another script, applNewver, is used when the source
code for the application is ready to be installed in the
production source area. This script takes the current
version of the application out of the CVS repository,
stores it in the production source area, and creates soft
links to all the production object areas for later use by the
installation procedure. At this point, the knowledge of the
directory structure has been stored in the CVS repository,
so a single script can be used to retrieve all application
types.

Once the developer has compiled the source into object
code and converted Capfast schematics to EPICS
databases, the install procedures encoded in the makefiles

are used to install the objects to the correct production
area.

2.2 Scheduling Installation and Writing a Test
Plan

Before an IOC application can be installed, a test plan
must be written and approved and the installation must be
scheduled during one of the approximately bimonthly
accelerator maintenance periods. A Web-based tool has
been written for the developer to use for all these
functions.

Using a template form, the developer provides basic
information needed by maintenance schedulers such as
which IOCs will be affected, which applications will be
affected, what types of changes will be made and how
long the installation will take. Maintenance schedulers
have this information available well before the actual
maintenance period allowing hardware and software tasks
to be coordinated.

A full test plan detailing the new and rollback versions
for the application, the IOC installation and setup
procedure, installation and rollbacks for affected Unix
files (medm screens, burt files, etc.), test procedures, and
rollback procedures must be written and approved before
the maintenance period. The developer uses the same
template form started for the scheduler to complete the
test plan. When completed, the developer electronically
submits the test plan. Submission means that test plan
approvers are e-mailed the URL of the test plan.
Approvers read the test plan and either approve it or
request more information from the developer.
Maintenance day schedulers are e-mailed the URL of the
test plan once it has been approved.

2.3 Managing Soft Links in the IOC Boot
Directory

When it is time to install the new or upgraded
application another tool is used to configure and change
the soft links in the IOC boot directories. All applications
and IOC startup scripts are accessed in the IOC boot
directories through soft links. This provides the means to
quickly access new or rollback versions of applications. In
addition, the ability to change the soft link for a single
application minimizes the chance that other applications
running on the same IOC which have not been changed
will be affected.

The IOC soft link configuration is stored in a
configuration file in the IOC boot directory. A
“linkmaker” tool makes the actual soft links. This tool
reads the configuration file, makes the appropriate soft
links, and verifies the existence of the files pointed to by
the links. Part of the linkmaker tool includes a link
browser. The browser reads a configuration file, displays
the links that will be made for an IOC (without actually
making the links) and verifies the existence of files

144

pointed to by the links. A “future” configuration file can
be set up and developers can check to make sure all
needed files have been correctly installed in the
production object area prior to the maintenance period,
which saves time. The linkmaker tool has proven very
useful, particularly when upgrading all applications on an
IOC, as when the control system changed to a new version
of EPICS and VxWorks for Y2K compliance this year.
An added advantage of using the link configuration files
along with a well-defined procedure for naming and
changing them is that an unambiguous record exists of the
rollback path for an IOC.

2.4 Completing the Installation

Once the maintenance period begins, most of the
planning and code installation has already been
completed. The only preparation that needs to be done is
to modify the IOC link configuration files according the
correct procedure (which is provided as part of the test
plan template), run linkmaker to change the IOC links,
reboot the IOC and follow the test procedure outlined in
the test plan. If the new software checks out OK, the new
version of the application is left running on the IOC. If a
problem is encountered, it is a simple matter to roll back
the application to its previous version by running
linkmaker to change the soft link and rebooting the IOC.
Once an application has been successfully installed,
comments or test results are added to the test plan and it is
checked off as completed. The URL for completed test
plans, along with the test results, are routed to one or
more of the electronic logbooks used in operations so that
a record of the IOC changes is kept.

3 APPLICATION UPGRADES AND
SOFTWARE ON-CALL

3.1 Application Upgrades

The procedures to upgrade an application are very
similar to the procedures for the initial installation. The
current version is committed to the CVS repository and
tagged using the CVS Release Notes tool. A new version
is created with applNewver. The application is modified
and tested in the test area, if possible. Installation of the
upgrade is scheduled.

Modifications are committed to CVS and the
differences between the new version and the current
operational version are documented using the CVS and
Release Notes tool. Release notes for an application are
created and accessed by version so it is easy to determine
when changes to a system were introduced. Some
developers do this step before the application is installed,
others wait until the application has been installed before
performing this step.

A test plan is written and approved. The new version is
compiled and installed. On the maintenance day, the

linkmaker tool is run to change the application links, the
IOC is rebooted and the changes tested according to the
procedures outlined in the test plan. The test results are
recorded and the test plan completed and recorded in the
electronic logbooks.

3.2 Software On-call

The Controls Group provides 24-hour software on-call
support to operations. The software on-call person is
responsible for diagnosing any operational problems
which may be caused by software, fixing the problem if
possible, or contacting the appropriate system developer if
the problem requires an expert.

Many of the tools described above aid in this process.
As mentioned previously, the CVS and Release Notes tool
interfaces with the LLAPP Version Info Web browser.
The Web browser displays information about the control
system such as which versions of what applications are
running on each IOC, which fiefdom the IOC belongs to,
when each application was last updated and which
developer owns the application.

In addition to access to the application description and
release notes, the CVS and Release Notes tool enables
developers to store “ancient history” about the application.
These are release notes maintained by developers before a
common interface was developed. The CVS and Release
Notes tool also enables developers to store
troubleshooting information for each application.

All of this information is easily accessible through
LLAPP Version Info and can be used by software on-call
personnel even when they are off-site. The information
can be used to quickly identify applications that have
recently changed, evaluate the recent changes, determine
if these changes could be causing the operational problem,
and identify the developer of the application.

If it becomes necessary to roll back an application
during operations, the roll back information in the
completed test plan along with the linkmaker tool allows
problem software to be removed and working software to
be restored quickly, even if the application developer is
unavailable.

4 FUTURE DIRECTIONS
The IOC management tools and procedures have

proven to be very useful and have improved the reliability
of the IOC software management. The next step in tool
development will be to integrate a relational database into
the system. Currently, much configuration information is
stored in flat files scattered throughout the file system and
maintained through text editors. The tools described do a
good job of “discovering” the IOC configuration but
much improvement is needed to make the system more
accurate and reliable. This task will be more easily
accomplished and improved tools will be provided to
software developers with the use of a relational database
to store and retrieve configuration information.

145

