X-ray Phase-Contrast Microscopy and Microtomography using a LabBased System

S. W. Wilkins ${ }^{1}$, S.C Mayo ${ }^{1}$, P.R. Miller ${ }^{1}$, D. Gao ${ }^{1}$, T.E. Gureyev, J. Sheffield-Parker ${ }^{2}$
${ }^{1}$ CSIRO Division of Manufacturing and Infrastructure Technology, Private Bag 33, Clayton South, VIC 3169
${ }^{2}$ XRT Limited, A3.0, 63 Turner Street, Port Melbourne, VIC 3207

We have developed an X-ray microscope, the XuM, based on a scanning electron microscope in which the fine focus of the electron beam is used to produce a submicron x-ray source down to 100 nm in size $[1,2]$. This is used in a point projection imaging regime in which the sample is much closer to the x-ray source than to the detector. This geometry results in natural magnification, and, due to the small source-size and large gap between sample and detector, it also produces in-line phase-contrast.

Whereas conventional x-ray imaging relies solely on x-ray absorption, inline phase-contrast exploits the refraction of x-rays by a sample to enable imaging of non- or weakly absorbing specimens and to enhance the visibility fine features, edges and boundaries. Extending this form of imaging to microscopy and microtomography enables us to look inside a weaklyabsorbing microscopic samples without cutting them physically at resolutions down to $<100 \mathrm{~nm}$ (imaging) or 1 or 2 microns (tomography).

We will show examples of microscopy and microtomography of a wide variety of specimens using this instrument. The importance of phase-retrieval in tomographic reconstruction, and methods of improving tomographic resolution will be discussed. These techniques are equally relevant to synchrotron-based applications.

Some References

1. S.C Mayo, P.R. Miller, S.W. Wilkins, T.J. Davis, D. Gao, T.E. Gureyev, D. Paganin, D., D.J. Parry, A. Pogany, and A.W. Stevenson, J. Micros., 207, (2002) pp. 79-96.
2. S.C. Mayo, T.J. Davis, T.E. Gureyev, P.R. Miller, D. Paganin, A. Pogany, A.W. Stevenson, S.W. Wilkins, Optics Express, 11, (2003), pp. 2289-2302.
