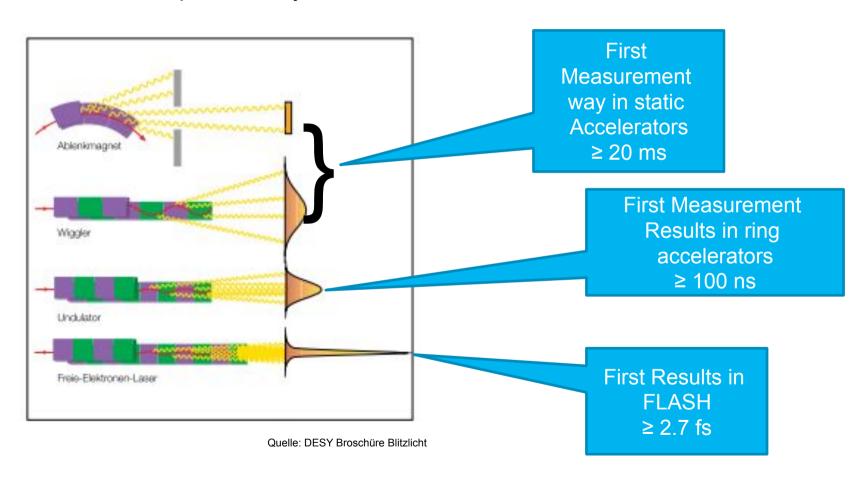


Commercializing of new technologies from Research Institutes focused on MTCA.4 at DESY

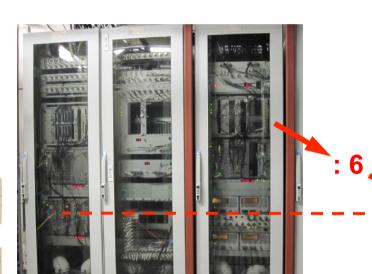
Friedrich Fix / AD-TE-C
Dr. Frank Ludwig / DESY for the LLRF Team
Trieste 06.06.2013


Content

- Motivation for researching of new Technology
 (Example: High-frequency cavity control for the European XFEL)
- Validation project at DESY "MTCA.4 for Industry" (HVF-0016)
- Module Production Process and Commercialization via Licensing
- High End Systems for High End Applications
- Difference between industry and Research requirements
- > Entering the Market with industrialized research Systems

Motivation for Researching of New Technology

Evaluation steps of X-Ray sources :

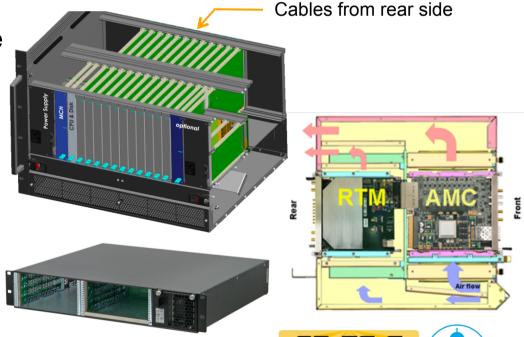

European XFEL at DESY

- 808 superconducting 1.3 GHz RF cavities
- 101 cryomodules (8 cavities)
- 25 RF stations (4 cryomodules)

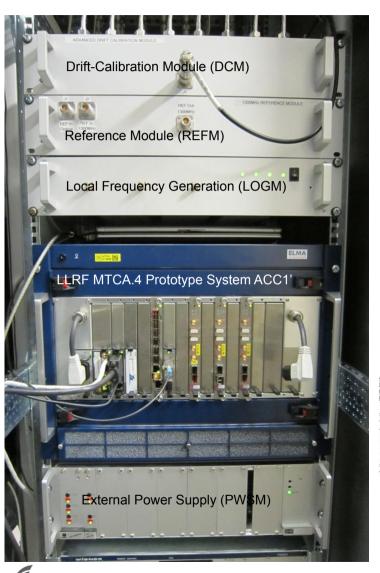
From electronic standard VME (30 years running) to modern MTCA.4 :

- Cavity regulation systems are in the tunnel
- Distributed FPGA concept
- High speed data processing
- Process 6 times more signals
- Lowest spectral density (16-bit ADCs)
- Redundant systems in the injector

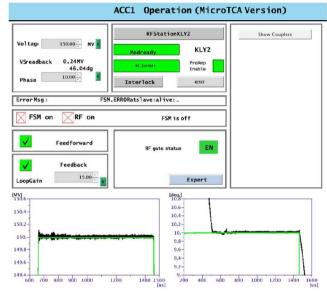
- 2U Calibration box
 2R Reference Link
 3U LO Ceneration & Distribution Box
 10 Distribution Box
 2D Total Paris
 3U LO Ceneration & Distribution Box
 2D Total Paris
 3U LO Ceneration & Distribution Box
 2D Total Paris
 3U LO Ceneration & Distribution Box
 2D Total Paris
 3U LO Ceneration & Distribution Box
 2D Total Paris
 3U LO Ceneration & Distribution Box
 2D Total Paris
 3D LO Centrality
 3D LO Ceneration & Distribution Box
 2D Total Paris
 3D LO Centrality
 3
- > Review meeting 12/2007: XFEL will be based on xTCA
- > XFEL fast electronics and controls will be based on MTCA.4: > 200 crates

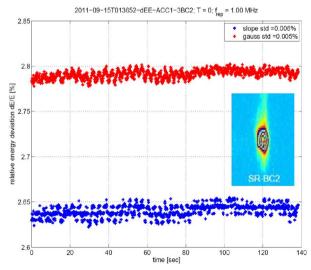

MTCA.4 Crate Standard

- > Development partnership "xTCA for Physics" (38 partner): 03/2009
 - Research insitute: SLAC, FNAL, IHEP, IPFN, ITER, DESY
 - Industry: connector-, board-, crate-, system manufacturer
- Ratification PICMG 2011 (http://www.picmg.org)
 - Micro Telecommunications Computing Architecture .4 (MTCA.4)


> Modular + modern architecture

- Reusability + PCle + Ethernet
- High availability
 - Redundant power and fan optional
 - Well defined remote management
- > High digital performance
 - Very low analog distortions
 - 4 lanes PCIe: 400 MB/s ... 3.2 GB/s

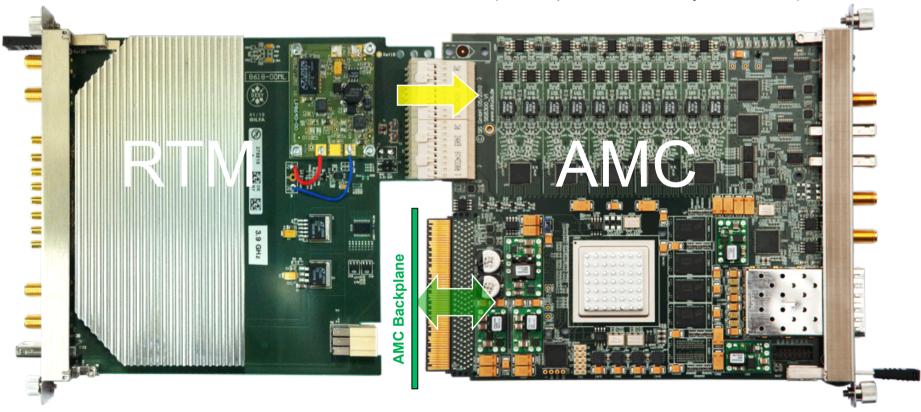



LLRF System Performance Test at FLASH using MTCA.4

> FLASH operation:

On-crest energy stability (SR-3BC2)

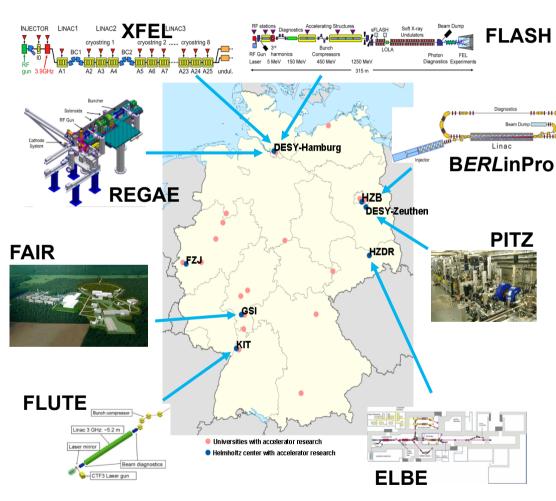
Energy stability dE/E = 5E-5.



High-End Applications

Analog Signal Conditioning (Developed by DESY) Digital Signal Processing struck innovative systeme
(Developed from Industry with DESY)

- 10 channel down-converter (1.3 GHz, ..., 3.9 GHz)
- Resolution, 0.003 %, 0.003 deg, < 10 fs
- 10 channel ADCs (125 Msps, 16-Bits)
- FPGA pre-processing partial cavity vector sum
- Low latency links via MTCA-backplane



Single Cavity LLRF Systems in MTCA.4 Europe / Worldwide

> Involvement in Facilities:

> ... and in Europe:

Total budget ~ 1,47B€ Construction: 2013-2019

the way to new energy

Total budget ~ 1,47B€ Construction: **2013-2019**

TARLA,...

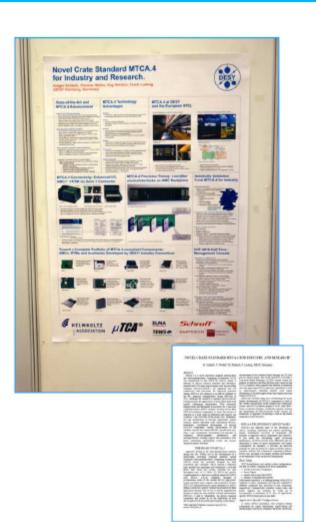
Worldwide:

"MTCA.4 for Industry" (HVF-0016)

To foster industrialization of MTCA.4:

- ➤ Commercialization of DESY designs → industry (licensing)
 - Cost and quality improvements
 - New modules to complete portfolio
- Completion of standard for industry and institutes
 - Add missing modules
 - Improve EMI with test environments and shielding
 - Gain new MTCA.4 applications in more markets
- Support for institutes and industry
 - Consulting: Help to start with MTCA
 - User guide and Web Site
 - Organization of workshops and exhibitions

Project duration: mid 2012 ... mid 2014


"MTCA.4 for Industry" (HVF-0016) - Marketing

MTCA-Flyer

Website Data sheets

Poster / Paper

"MTCA.4 for Industry" (HVF-0016) - Events

MTCA Workshop (12/2012)

embeddedworld (02/2012)

MTCA Tutorial (05/2013)

IPAC (05/2013)

Module Commercialization via Licensing to Industry

> Why :

- Main business for DESY is research, development and prototyping.
- Industry is better prepared for low prices and quality improvements.
- Institutes, facilities and industry can buy standard components.
- Broad MTCA.4 market -> long-term availability of components.

> How: Via non-exclusive, multiple and time limited licenses

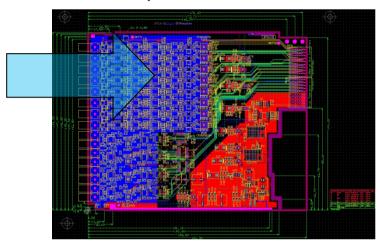
- License covers only the production of a module, IP stays in-house
- License partner = production, sales and distribution partner
- Extended license offering all sources for industry developments

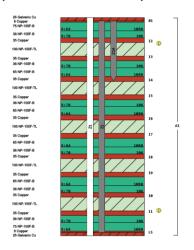
- DAMC-TC7
- DRTM-VM02
- DRTM-DWC8VM1
- eRTM-LOG1300
- DAMC-DS800
- DRTM-DSCLK

- DAMC-DSCLK
- DAMC-FMC20
- DAMC-FMC25
- DFMC-MD22
- DAMC, DRTM-EMI
 - ... and more ...

Dr. Ilka Mahns / DESY Technology Transfer Division

Design and Production Process


> Board Design (Source Data): > Board Specification: **Electrical and Mechanical Specifications** N:\4all\public\ MSK LLRF Devices\uT(> Auto Route Reports Window Help - Operation Pair (connector pin compatibility): DAMC2 RTM (Zone3) Connector - Total power dissipation Functions: ---- Switchable ADC input impedance (50 Ohms and high impedance) - Anti-aliasing filter (could by bypassed) - All ADC and DAC-Channels independent Controllable - 2 stage DC/DC, Analog regulator chain Back-Panel Connections: - ADC inputs: 8 channels 95MHz / 2MHz - Bandwidth / with filter - Voltage Level / Damage - 1V...+1V / >±2.5V single ended (Potential free) / 50 Ohm or 1kOhm - Type / Impedance - Connector Lemo (single) REAR panel RTM - Location - DAC outputs (high voltage): - Output Update Rate / with Filter: 2MSPS / 16MSPS Editor - Voltage Level - 3V...+3V @ 50 Ohms - Type / Impedance single ended / 50 Ohm ADC_DAC.PcbDoc - Connector Lemo (single) REAR panel RTM - Location - DAC outputs (low voltage): 4 channels 2MSPS / 16MSPS - Output Update Rate / with Filter: - Voltage Level - 1V...+1V @ 50 Ohms - Type / Impedance single ended / 50 Ohm - Connector Lemo (single) - Location REAR panel RTM IO-Signals: --- Status LEDs for operation location lower side of RTM - Standard Sensor Readout MTCA.4, EEPROM, IO Extender Packaging: Double Mid-size, 4 TE RTM Module - Form Factor: - Board Package Substrate material FR408 V■ Bottom Layer V□ Mechanical 1 V■ Mechanical 2 V■ Mechanical 3 V■ Mechanical 3 V■ Mechanical SV■ Mechanical S X:210.5mm Y:145.6mm Grid:0.1mm (Electrical Grid) System Design Compiler Help Instruments PCB >>

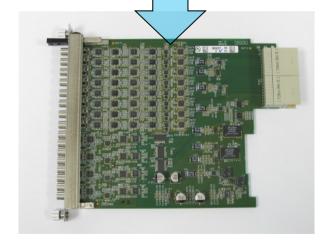


Production Data for Licensing

Board production Gerber Files: (Structure data)

> Board production BOM (Bill Of Material):

1	Comme *	Toleran ♥	Volta ▼	Manufacturer ▼	ManufacturerNr ▼	Distributo ▼	DistributorNr ▼
2	10uF	20%	10V	TDK	C1608X5R1A106M	Farnell InOne	1962113
3	10nF	10%	25V	AVX	06033C103KAT2A	Farnell InOne	2280646RL
4	330uF	20%	35V	Panasonic	EEEFT1V331AP	Farnell InOne	1868419RL
5	330uF	20%	10V	VISHAY SPRAGUE	TR3D337M010C0125	Farnell InOne	1754080RL
6	22uF	20%	16V	AVX	1206YD226MAT2A	Farnell InOne	1833823RL
7	1uF	10%	25V	Murata	GRM188R71E105KA12D	Farnell InOne	1735540RL
8	100nF	10%	25V	AVX	06033C104JAT2A	Farnell InOne	1740614RL
9	11pF	5%	50V	Kemet	C0603C110J5GACTU	Farnell InOne	1865472RL
10	56pF	5%	100V	Kemet	C0603C56014C * 07**	_	

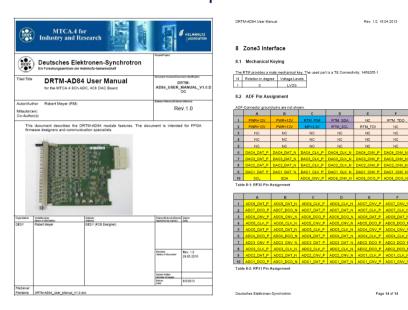

> Assembly stage: Pick & place lists

Designat	or Footprint	Mid X	Mid Y	RefX	C R	ef Y	Pad X	P
R89	R1206	31.4mm	4mm	31.4m	m	4mm	32.9m	n
REFB2	REF_1.5mm	25.5mm	4.1r	nm 2	25.5mm	4.1	mm :	25.5m
REFT2	REF_1.5mm	25.5mm	4.1r	nm 2	5.5mm	4.1	mm 2	25.5mr
REFT1	REF 1.5mm	37.1mm	144.6	mm	37.1mm	1.4		~~ 1

Board production (External company)

Other Data for Licensing

> Datasheet:



Functional test procedures

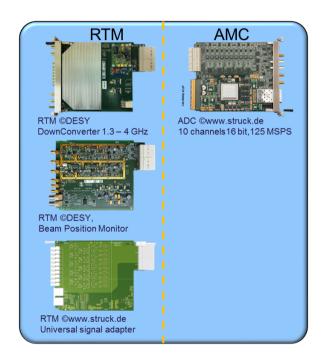
For securing the quality of the product there are some tests and functional checks to be made:

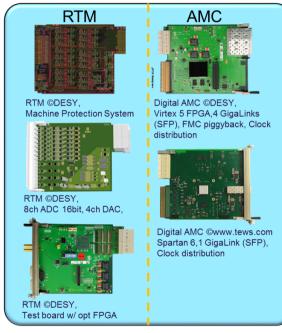
- 1. PCB-Manufacturer: electrical test report
- 2. PCB-Manufacturer: impedance control.
- 3. Visual inspection of PCBs: bad soldering (PB-free), connections and Jumper, all needed components soldered?
- 4. Measuring all voltages and/or the power consumption of the Boards.
- 5. LED, MMC, Functional test (Power, hot/swap).
- Quality check with Signals and AMC in Test crate configuration (uBLade PWS, Schroff Crate, AMC Backplane Schluss, AMC EMI Bypass), channel wise in time- und Spectral:
 - a. ADC: RAW-Spectrum, SNR, SFDR, distortions?
 - b. ADC: check if Input impedance is Switchable
 - c. ADC: check if Filter is on and off switchable
 - d. DAC: check if max and min Values are reachable
- 7. Short Test Report. Relevant measurement data (Spectrum) packed for saving.

> User manual to operate the module :

> Optional:

- Schematics (pdf versions for QA & QC)
- PCB sources (ASCII versions for production)





High End Systems for Industry?

- DESY developing boards for their own application continuously but they don 't like to produce big quantities.
- DESY has neither experience nor recourses for series production.

SP Devices

Instrumentation Technologies

Crates; PS-1138/...; PM Wiener; SIS8300/8900; AM900 uLOG (RTM); ADQxxx; MCH; TAMC900; ADIO24 ...

... and more and more from Industry ... http://mtca.desy.de

High End Systems for Industry?

DESY could not use the own high performance systems in big quantities.

- The best opportunity to solve this problem is:
 - Takeover licenses for the boards to the industry.

SWOT for DESY

Strength

Free recourses for new developments License incoming for the board design

Chances

Get lower prices in depend of bigger production lots by suppliers Get a continuous quality of boards Possibilities for design extensions

Weakness

Dependency to the supplier Dictations for prices?

Threats

Copying of designs from industry
Destroy the IP Rights
The biggest problem is if the supplier or
License holder is not able to deliver boards

What is the Advantage for the Industry?

SWOT for Industry

Strength

Short time to market with new developments
Increase the business with high end boards

Chances

To have the edge over the competitors
Enter the research market with this new boards
To establish the company in new markets

Weakness

Dependency to the institutes
In case of to much license holders to
less prices with less profit
No vendors beside the institutes

Threats

Block of production resources
Renewing the systems with other boards
the license becomes worthless
The institutes don't use the boards

Difference between Industry and Research

Development at Institutes	Development at Industry
Driven by highest ability	Driven by the market
Highest performance	Necessary performance for applications
Choice of best components	Choice of components in depence of prices
Longest lifecycle	Lifetime calculated up to 3-5 years
Result oriented developments	Development for a convenient and mass production procedure

Entering the Market with industrialized research Systems

- > The MTCA.4 Systems are developed for control and measurement in accelerators, at DESY especially at XFEL.
- > Which kind of industry could use such systems?
- For which branches could MTCA.4 becomes interesting?
- Where is the highest performance needed?
- Where is the best quality needed?
- Where is the longest lifetime needed?

Entering the Market with Industrialized Research Systems

The answer is:

- **Everywhere**
- A license holder could enter the markets, for instance:
 - Medical
 - Therapeutic radiology
 - MRT
 - CT
 - Communication
 - LTE Technology
 - Mobile telecommunication
 - Satellite communication
 - Transportation
 - Traffic Management
 - Driver Assistance Systems
 - Military
 - Radar
 - Unmanned systems

Examples from Industry using MTCA.0, MTCA.4

Printing industry: (MTCA.0,4)

Fiber to building / fiber to home: (MTCA.0)

Production inspection: (MTCA.0)

> Intelligent traffic management:

(MTCA.0)

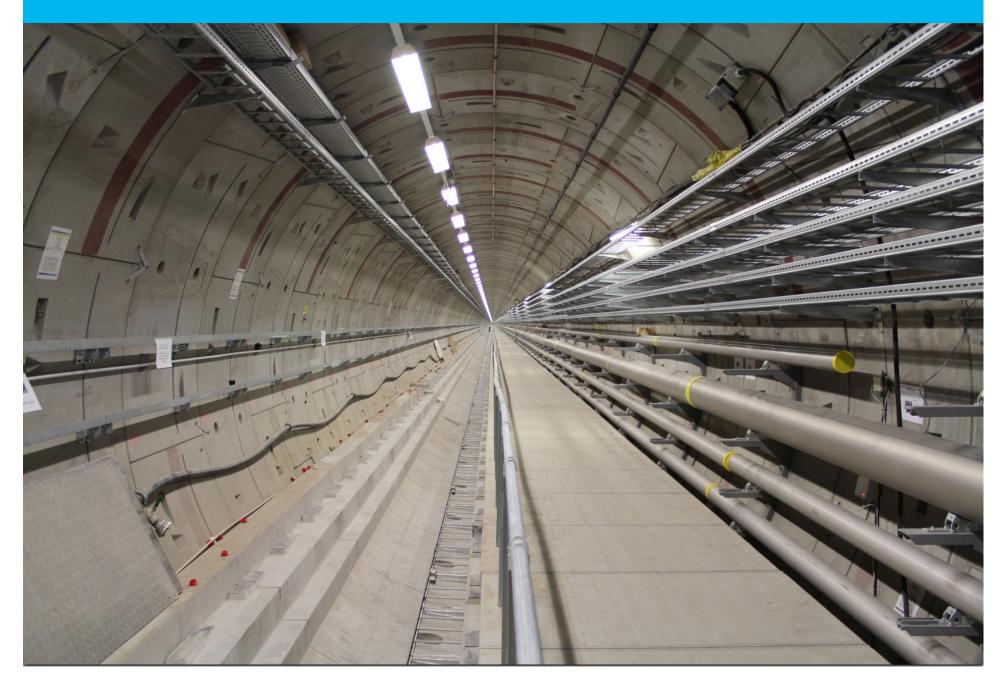
LTE Mobile baseband stations: (MTCA.0)

Telecom networks: (MTCA.0)

> To be explored ...

Energy Management

Process Industry



Medical Industry

Thanks for your attention!

