Addressing superconductivity with accelerator-based infrared and THz radiation sources

A. Perucchi, P. Di Pietro, P. Dore, S. Lupi
Outline

1. Infrared Spectroscopy and Superconductivity
2. THz superconducting gaps
3. Addressing electron correlation with high-pressures
4. Non-linear THz spectroscopy
5. The TeraFERMI project
6. Conclusions and outlook
IR energy scales and Superconductivity

Basov, Timusk, RMP 2005
IR Spectroscopy and Superconductivity

- Extended Drude Model
- Energy Gap
- T-dependence of SW
- Universal scaling relation
- K_{exp}/K_{LDA}
1. Infrared Spectroscopy and Superconductivity

2. THz superconducting gaps

3. Addressing electron correlation with high-presures

4. Non-linear THz spectroscopy

5. The TeraFERMI project

6. Conclusions and outlook
Infrared Synchrotron Radiation advantages

Carr et al. (Nature, 2002)

- Increased flux in the THz range
 ↑ Superconducting gaps

- Increased brightness in the whole IR range
 ↑ High-Pressure measurements in a DAC
Radiation is collected over a solid angle of 65 mrad (H) x 25 mrad (V)

M1 Plane mirror
M2 Ellipsoidal mirror
M3 Plane mirror
M4 Ellipsoidal mirror

a = 3.5 m c = 8 m e = 1.0 m
b = 1.0 m d = 3.0 m f = 1.0 m
Several bands crossing the Fermi level is not sufficient to have considerable many-band effects in superconductivity. Only when the bands have a very different physical origin, multigap effects take place. **Interband scattering has to be low!**

In 2001, multigap superconductivity has been demonstrated for the first time to take place in a real material, as MgB$_2$.

Multigap SC has been proposed for transition metals, A15 compounds, Copper-oxide high-Tc, Heavy Fermions, Pnictides

M. Norman, Physics (2008)
BCS-like electrodynamics

Superconductivity is ruled by *low-energy* electrodynamics:
The Superconducting Gap size and shape provide information on the nature and symmetry of pairing

\[
\frac{2\Delta}{k_B T_C} = 3.52 \quad \Rightarrow \quad T_C \approx 10 \text{ K} \quad \nabla \quad 2\Delta \approx 1 \text{ THz}
\]

Synchrotron advantage at THz frequencies with both coherent and incoherent sources

The Mattis-Bardeen (MB) relations are derived within the BCS theory, for a s-wave SC in the dirty limit (extension to arbitrary impurity scattering by Zimmermann)
MG Superconductors THz studies @ SISSI

MgB$_2$

Ortolani PRB (2008)

V$_3$Si

Perucchi PRB (2010)

Ba(Fe,Co)$_2$As$_2$

Perucchi EPJB (2013)
Outline

1. Infrared Spectroscopy and Superconductivity

2. THz superconducting gaps

3. Addressing electron correlation with high-pressures

4. Non-linear THz spectroscopy

5. The TeraFERMI project

6. Conclusions and outlook
Correlation strength and High Pressures
Ba-122 at High-Pressures

Baldassarre PRB (2012)

Wu et al. (2013)
Outline

1. Infrared Spectroscopy and Superconductivity
2. THz superconducting gaps
3. Addressing electron correlation with high-pressures

4. Non-linear THz spectroscopy
5. The TeraFERMI project

6. Conclusions and outlook
Non-linear THz optics at MV/cm

THz light couples with electronic, vibrational and magnetic excitations

Electronic response under giant quasi-static fields

Ultra-fast structural distortions and lattice control

Populating low-energy excited states

Ultra-fast magnetic switching (B~0.3 T)

E_c critical field

Dienst, 2011

Tudosa, 2004

1 From L. Carr

Rini, 2007

Populating low-energy excited states

Narrow-band THz excitation to limit starting population energy

Ultra-fast structural distortions and lattice control
Manipulating Mott Insulator-to-Metal Transitions

Filling-Controlled MIT:
- static (doping)
- dynamic (photoexcitation)

Bandwidth-Controlled MIT:
- static (pressure)
- dynamic (?)

THz pulses in the MV/cm range can drive lattice displacements in the pm range
Superconductivity close to an AF state: one general mechanism for HTSC?

“Conventional” BCS-like features (isotope effect, s-wave gap) together with the presence of strong correlation (large U, magnetism).

Retardation effects are poorly understood because of possible breakdown of adiabatic approximations (W~0.5 eV vs. ω_{ph}~0.2 eV)

Time-resolved studies of the electronic response upon lattice excitations

Need of employing THz pulses
- **short** (on the fs time-scale)
- **broadband** (over the largest possible phonon range)
- **powerful** (MV/cm)
The THz Gap

Quantum Cascade Lasers

Backward-Wave-Oscillators

Gas Lasers (CO\textsubscript{2} and CO\textsubscript{2}-pumped)

Si/Ge Lasers

NO TIME STRUCTURE!!!
THz femtosecond sources

THz
Time Domain Spectroscopy

Photoconductive Antennas
GaAs, TiO$_2$, ...

Optical Rectification
ZnTe, GaP, LiNbO$_3$, etc.
Up to 10’s μJ per pulse

RESTSTRAHLEN BAND GAP
(Optical Rectification in Organic Materials DAST, OH1, DSTM)

Optical Parametric Amplifiers
Tunable, Narrow-Band
Typically 1-10 μJ per pulse above 15 THz
Outline

1. Infrared Spectroscopy and Superconductivity
2. THz superconducting gaps
3. Addressing electron correlation with high-pressures
4. Non-linear THz spectroscopy
5. The TeraFERMI project
6. Conclusions and outlook
The TeraFERMI idea

Exploiting the properties of the FERMI-FEL electron beam to produce:

* Short (sub-ps), Powerful (>MV/cm), Broadband (0.1-10 THz)

THz pulses to be used as a **Pump** beam for ultrafast nonlinear spectroscopies

Exploiting the already existing LINAC: Reduced construction and operation costs

Parasitic THz emission: TeraFERMI will not affect overall FEL available beamtime

THz light always available

Possibility for THz pump / FEL probe
Accelerator-Based Coherent THz emission

Extending the FEL’s advantages into the THz region

\[N[1 + Nf(\omega)] \quad f(\omega) = \int_{-\infty}^{+\infty} \rho(t) \exp(-i\omega t) dt \]

- N ~ 6.24*10^7 @ 1pC Storage-Rings
- N ~ 6.24*10^{10} @ 1nC Single-pass accelerators

Transition Radiation occurs when relativistic electrons cross the boundary between two media of different dielectric constant

The Ginzburg-Frank equation:

\[\frac{d^2U}{d\omega d\Omega} = \frac{e^2}{4\pi^3\varepsilon_0c} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2} \]
Expected Performance

- Energy: $10^{-4} \div 10^{-3}$ J / pulse
- Peak Power: $10^8 \div 10^{10}$ W
- Electric Fields: 1-100 MV/cm
- Magnetic Fields ~ T

1 nC charge
Flat-top profile
Performance under FEL operation

Frequency (THz)

Pulse Energy (µJ)

I (kA)

Time (fs)

Δt (fs)

Pulse Energy (µJ)

Frequency

I (kA)

Time (fs)

Δt (fs)
Conclusions

Exploiting synergies between accelerator-based THz sources

SISSI

Stable, high brightness IR-THz source
(10 mm to visible range)
Superconducting gaps, collective modes,
High-Pressure studies

TeraFERMI

Ultra-short, high-power THz pulses
between 1 mm - 20 μm (0.3 - 15 THz)
Access to the Reststrahlen-band gap!
Pumping on electronic, vibrational,
magnetic excitations
Phase separation phenomena are ubiquitous in strongly correlated electron systems.

\[V_2O_3 \] (Lupi, 2010) \hspace{1cm} \[VO_2 \] (Qazilbash, 2007)

Probing free carriers, SC gaps, vibrational modes on the local scale with nm resolution

\(\Rightarrow \) High brightness, THz broadband sources

Synchrotrons, FEL’s
Acknowledgments

S. Lupi - “Sapienza” University of Rome and CNR-IOM
P. Di Pietro - INSTM

L. Baldassarre (IIT), M. Capone (SISSA), P. Dore (Sapienza), C.B. Eom (Madison), S. Lee (Madison), P. Postorino (Sapienza), M. Riccò (Uni-PR)

J. Byrd (ALS), G.L. Carr (BNL), A. Cavalleri (C-FEL), E. Chiadroni (LNF), D. Fausti (Uni-TS), G.P. Gallerano (ENEA), M. Gensch (FELBE), M. Martin (ALS), D. Nicoletti (C-FEL), F. Parmigiani (Uni-TS), U. Schade (BESSY), B. Schmidt (DESY), G. Williams (J-Lab), A. Zholents (APS)
Thank you!