Multi-element Germanium Detectors for Synchrotron Applications

Abdul K. Rumaiz⁽¹⁾, Anthony J. Kuczewski⁽¹⁾, Joseph Mead⁽¹⁾, Emerson Vernon⁽¹⁾ Eric Dooryhee⁽¹⁾, Sanjit Ghose⁽¹⁾, **D. Peter Siddons**⁽¹⁾ Antonino Miceli⁽²⁾, Jonathan Baldwin⁽²⁾, Jonathan Almer⁽²⁾, John Okasinski⁽²⁾, Orlando Quaranta⁽²⁾, Russell Woods⁽²⁾, Thomas Krings⁽³⁾,

Stuart Stock⁽⁴⁾

Brookhaven National Laboratory, Upton, New York 11973, USA.
Argonne National Laboratory, Argonne, Illinois 60439, USA.
Forschungzentrum Julich GmbH, 52425 Julich, Germany.
Northwestern University, Evanston IL 60208, USA.

siddons@bnl.gov (Presenting author in bold,)

We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readouts systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays.

We will discuss the technical details of the systems, and present some of the results from them.