

Gianluca Geloni, European XFEL

FUSEE Workshop, Trieste, December 2019

European XFEL

G. Geloni, FUSEE Workshop, Trieste, December 2019

Contents

A short introduction to self-seeding

Working Self-Seeding installations

- LCLS (SXRSS and HXRSS)
- SACLA (HXRSS transmission/reflection)
- PAL (HXRSS)

HXRSS at the European XFEL

Outlook and Conclusions

A short introduction to self-seeding

Method first introduced for soft x-rays [J. Feldhaus, E. Saldin, J. Schneider, E. Schneidmiller, M. Yurkov, Optics Comm. 140, 341 (1997)]: basically an active filter in frequency

First part: usual SASE pulse in the linear regime

Chicane needed for:

- Creating an offset to insert the monochromator
- Washing out the electron beam microbunching
- Acting as a tunable delay line
- The photon pulse from SASE goes through the monochromator
- Photon and electron pulses are recombined

Independently of Self-Seeding:
 Chicane for 2 colors...
 Chicane for autocorrelation...
 Chicane for DD scan...

Challenging: compensating the optical delay from the mono within a compact setup

European XFEL

G. Geloni, FUSEE Workshop, Trieste, December 2019

A short introduction to self-seeding

G. Geloni, V. Kocharyan, E. Saldin 'A novel self-seeding scheme for hard X-ray FELs' Journal of Modern Optics 58, 16 1391 (2011)

A short introduction to self-seeding

Note: notch-shape changes the profile, but not pricipal

G. Geloni, V. Kocharyan, E. Saldin 'A novel self-seeding scheme for hard X-ray FELs' Journal of Modern Optics 58, 16 1391 (2011)

A short introduction to self-seeding

Reflection self-seeding at SACLA

Ichiro Inoue^{*1}, Taito Osaka¹, Takahiro Inagaki¹, Shunji Goto^{1,2}, Toru Hara¹, Yuichi Inubushi^{1,2}, Ryota Kinjo¹, Haruhiko Ohashi^{1,2}, Takashi Tanaka¹, Kazuaki Togawa¹, Kensuke Tono^{1,2}, Hitoshi Tanaka¹, and Makina Yabashi^{1,2} A micro channel-cut crystal X-ray monochromator for a self-seeded hard X-ray free-electron laser

Taito Osaka,^{a,*} Ichiro Inoue,^a Ryota Kinjo,^a Takashi Hirano,^b Yuki Morioka,^b Yasuhisa Sano,^b Kazuto Yamauchi^b and Makina Yabashi^{a,c}

7

→ Recent reflection-based mono at SACLA

G. Geloni, FUSEE Workshop, Trieste, December 2019

A short introduction to self-seeding

PRL 114, 054801 (2015)

PHYSICAL REVIEW LETTERS

week ending 6 FEBRUARY 2015

Experimental Demonstration of a Soft X-Ray Self-Seeded Free-Electron Laser

G. Geloni, FUSEE Workshop, Trieste, December 2019

Self-Seeding installations: SXRSS at the LCLS

LCLS Parameters:

- Electron energy: up to 14 GeV
- Undulator length: 33 segments x3.4m magn. length
- Undulator period: 30 mm
- Peak current: 2-4kA
- Spectral reach: 280eV-12.8keV

Best SASE reaches a maximum average brightness of ~90k counts on this scale, Best Seeded with a large SASE pedestal reaches an average brightness of ~150k on this scale.

SXRSS scan possible by moving M1 & e-energy

European XFEL

Thanks to A. Lutman for data, slides and discussions

Self-Seeding installations: SXRSS at the LCLS

slit 1st Undulator section makes SASE, that gets monochromatized in the SXRSS chicane 2nd Undulator section amplifies the seed, should not reach saturation to have second color 3rd Undulator section makes SASE at a different color.

G. Geloni, FUSEE Workshop, Trieste, December 2019

Self-Seeding installations: HXRSS at the LCLS

First experimental verification at the LCLS (Jan 2012): J. Amann, Nature Photonics 6, 693 (2012)

Courtesy of Paul Emma

Thanks to A. Lutman for data, slides and discussions

Self-Seeding installations: HXRSS at the LCLS

Combination with fresh bunch

C. Emma et al, APL, 2017

Thanks to A. Lutman for data, slides and discussions

Self-Seeding installations: HXRSS at the LCLS

Comparison best seed vs. best SASE ever (6mJ scaled) after a mono with rectangular 1eV BW response function

Self-Seeded

	Average Energy	Average Energy in 1.088 eV	Fluctuations	Fluctuations in 1.088 eV	Strongest Shot	Strongest Shot In 1.088 eV
50 fs Full set	0.390 <u>mJ</u>	0.255 <mark>mJ</mark>	55%	58%	1.08 <u>mJ</u>	0.675 <u>mJ</u>
30 fs Full set	0.752 <u>mJ</u>	0.482 <u>mJ</u>	42%	54%	1.80 mJ	1.45 mJ
50 fs Bunch energy filtered	0.49 <u>mJ</u>	0.33 <u>mJ</u>	43%	43%	1.08 <u>mJ</u>	0.675 <u>mJ</u>
30 fs Bunch energy filtered	0.89 <u>mJ</u>	0.57 <u>mJ</u>	33%	45%	1.80 <u>mJ</u>	1.45 <u>mJ</u>

SASE

	Average	Average	Fluctuations	Fluctuations	Average x 4
		1.088 eV		1.088 eV	in 1.088 eV
3.7 <u>mJ</u> SET	3.7	0.25 <mark>mJ</mark>	9%	45-60%	1 <u>mJ</u>
6 <u>mJ</u> SCALED	6	0.4 <u>mJ</u>	9%	45-60%	1.6 <mark>mJ</mark>

Average x 4 is listed to generally take into account SASE fluctuation within bandwidth.

Thanks to A. Lutman for data and discussions

European XFEL

Similar behavior is reported as concerns average and most intense shots

Thanks to A. Lutman for data, slides and discussions

Self-Seeding installations: HXRSS at SACLA (transmission)

Thanks to T. Tanaka and T. Osaka

Self-Seeding installations: HXRSS at SACLA (transmission)

7.8 GeV Beam energy Beam charge 340 pC Undulator K-value 2.1 Photon energy 10 keV Pulse repetition 10 pps

Spectral brightness was much lower than normal SASE...

Two problems:

Broad SASE background

Comparable transmitted SASE tail and monochromatic seed?

Transmitted SASE makes the tuning difficult

We cannot directly see the seed pulse, such as, intensity, profile, pointing etc.

From I. Inoue et al., talk at FEL19 **European XFEL**

Thanks to T. Tanaka and T. Osaka

µ-Channel-cut monochromator

Self-Seeding installations: HXRSS at SACLA (reflection)

Presented by M. Yabashi at XFEL 3-way meeting in 2011

Single 'micro' channel-cut crystal (g ~ 100 μm)

- Clean monochromatic seed w/o SASE contamination
- High conversion efficiency from SASE to seed
- Cooling capability

Si(111) μ channel-cut crystal ightarrow generative angle (arcsec)T. Osaka et al., J. Synchrotron Rad. (2019)

Diffraction plane: Si(111) (\triangle E/E ~ 1.3e-4) Channel width: 90 µm Energy range: >4.5 keV in design Optical delay: 120 fs @10 keV Beam offset: <180 µm Spatial acceptance: ~100 µm (V) x 500 µm (H)

Spatial acceptance is large enough for incident SASE beam (~50 µm FWHM)

European XFEL

Self-Seeding installations: HXRSS at SACLA (reflection)

Early commissioning results

Thanks to T. Tanaka and T. Osaka

Self-Seeding installations: HXRSS at SACLA (reflection)

G. Geloni, FUSEE Workshop, Trieste, December 2019

Self-Seeding installations: HXRSS at PAL

Undulator Line	HX1	SX1
Photon energy [keV]	2.0 ~ 14.5	0.25 ~ 1.25
Beam Energy [GeV]	4 ~ 11	3.0
Wavelength Tuning	energy	gap
Undulator Type	Planar	Planar
Undulator Period / Gap [mm]	26 / 8.3	35 / 9.0
No. of undulators	20	7

Self seeding system

Small e-energy Jitter: 0.012% rms

Configuration: 8+12

Thanks to Heung-Sik Kang for data, slides and discussions

Self-Seeding installations: HXRSS at PAL From Chang-Ki Min Talk at FEL19, TUB03

Thanks to Heung-Sik Kang for data, slides and discussions

Self-Seeding installations: HXRSS at PAL

Thanks to Heung-Sik Kang for data, slides and discussions

Nominal electron energy points: 8.5 GeV, 12 GeV, 14 GeV and 17.5 GeV

- HXR undulators (SASE1, SASE2)
 - -period: 40mm
 - -length: 35 segments x5m magnetic length each
 - -Nominal Spectral reach: 3.0keV 25keV (at different electron energies)

HXRSS at the European XFEL

Long undulators (175m magnetic length at SASE2) → Tapering

High repetition-rate. Overall, more pulses but:

Larger heat-load. For example HXRSS:

G. Geloni, FUSEE Workshop, Trieste, December 2019

- $\rightarrow \omega$ -shift beyond Darwin width (conservative)
- \rightarrow Spectrum broadening

Two sources:

\rightarrow SR

 \rightarrow FEL-based : depends heavily on photon energy

HXRSS at the European XFEL One example for 17.5GeV 100pC electron beam

C004 symmetric, 100mum

European XFEL

G. Geloni, FUSEE Workshop, Trieste, December 2019

HXRSS at the European XFEL

HXRSS at	the E	urc	opean XFEL	
		5	5 15 15 15 15 15 15 15 15 15 1	
 x position control range y position control range x and y position settability (rms) crystal extraction position (approx). crystal pitch angle hard limit range crystal pitch angle limit switch range crystal pitch angle operation range pitch angle settability (rms) crystal yaw angle control range crystal yaw angle settability (rms) 	$\begin{array}{c} -1.5/+9 \\ +2/-10 \\ <0.05 \\ x = +9 \\ 42 - 98 \\ 45 - 95 \\ 47 - 93 \\ <0.005 \\ \pm 2.5 - \pm 3 \\ <0.010 \end{array}$	mm mm mm deg deg deg mrad deg mrad		
	Europ	ean X	FEL	DESY.

G. Geloni, FUSEE Workshop, Trieste, December 2019

High Resolution hard X-ray single-shot spectrometer available

HIREX spectrometer at SASE1 from J. Gruenert et al, JSR 26, 1422 (2019)

A similar unit is available at SASE2

September: 8 keV, C(004), 100um. First HXRSS try (spectrometer available)

First seeding indications, chicane around 25fs delay

- First observation of selfseeding at SASE2 in the linear regime
- Only a few microjoules

Many people involved in different ways from different facilities...

Suren Abeghyan, Ulrike Boesenberg, Sara Casalbuoni, Wolfgang Freund, Jan Gruenert, Suren Karabekyan, Andreas Koch, Naresh Kujala, Daniele La Civita, Gianluca Geloni, Theophilos Maltezopoulos, Marco Ramilli, Svitozar Serkez, Harald Sinn, Liubov Samoylova, Roman Shayduk, Vivien Sleziona , Patrick Thiessen, Takanori Tanikawa, Sergey Tomin, Maurizio Vannoni, Mikhail Yakopov, Angel Rodriguez-Fernandez, Alexey Zozulya (EuXFEL), Frank Brinker, Winni Decking, Wolfgang Freund, Nina Golubeva, Marc Guetg, Wolfgang Hillert, Evgeny Negodin, Dirk Winfried Lipka, Raimund Kammering, Vitali Kocharyan, Lars Froelich, Shan Liu, Matthias Scholz, Evgeni Saldin, Dirk Winfried Lipka, Torsten Wohlenberg (DESY), Vladimir Blank, Sergey Terentiev (TISNUM), J. Anton, S. Kearney and D. Shu (ANL)

...apologies if I forgot somebody...

..and special thanks to Alberto Lutman (SLAC) for making available his calibration tool.

European XFEL

1 pixel = 0.55 eV

October: 9 keV, C(004), 100um. Best seeded beam up to now

A first attempt to go to higher rep-rate. 10 \rightarrow 50 bunches/train (10 trains/second)

November: 9.3 keV, C(-3-33), 100um.

Extremely bad SASE conditions: max 35uJ from XGM (run 211)

Si(440) mounted → better resolution: run 210 – FWHM = 0.6 eV; run 211 – FWHM = 0.8 eV

HXRSS at the European XFEL

Data analysis by V. Sleziona

Outlook and Conclusions

- 1x operating SXRSS system (LCLS)
- 4x operating HXRSS system (LCLS, SACLA, PAL, EuXFEL)
- Did not discuss about systems under considerations
- ...Nor possible schemes e.g. for shorter wavelengths, seeding + harmonics
- These devices rely on magnetic length & e-beam quality extra-budget
- EuXFEL only started the commissioning
 - Robust (even with bad SASE), and clean pulses
 - Unicity of EuXFEL:
 - High rep rate
 - Second chicane
 - Long undulators \rightarrow effective tapering possibilities

The End...

Thanks for your attention!

