Recent results of HHG-seeding experiment at FLASH

Seeding and Self-seeding at New FEL Sources

Trieste

10/12/2012

on behalf of the sFLASH group

Velizar Miltchev

•Supported by BMBF under contract 05 ES7GU1
•DFG GrK 1355
•Joachim Herz Stiftung
FLASH layout

Running for users down since 2005
Wavelengths down to 4.1 nm

- Normal conducting 1.3 GHz RF gun
- Ce$_2$Te cathode
- Nd:YLF based ps photocathode laser

RF Gun THz

Bunch Compressor 150 MeV

Bunch Compressor 450 MeV

1250 MeV

LOLA

Undulators

Bypass

5 MeV

150 MeV

315 m

Diagnostics and matching

Diagnostics and matching

Diagnostics and matching

3rd harmonic cavity 3.9 GHz

TESLA type superconducting accelerating modules

Fixed gap undulator

length ~ 27 m

FEL Experimental Hall

TESLA type superconducting accelerating modules

Fixed gap undulator

length ~ 27 m

FEL Experimental Hall

3rd harmonic cavity 3.9 GHz

TESLA type superconducting accelerating modules

Fixed gap undulator

length ~ 27 m

FEL Experimental Hall

3rd harmonic cavity 3.9 GHz

TESLA type superconducting accelerating modules

Fixed gap undulator

length ~ 27 m

FEL Experimental Hall

V. Miltchev, SSSFEL’12, 10-12/12/2012
sFLASH building blocks
Linac set up

- setup accelerator for 700 MeV
 - bunch charge 0.5 nC
 - feedback systems for compression and energy
- establish high FEL gain at correct wavelength
 - tuning sFLASH to SASE
 - spectral overlap of 21st harmonic ($\lambda = 38.1$ nm) and sFLASH SASE
- transverse overlap (tolerances 50 μm, 50 μrad)

Example for **longitudinal current profile** of the electron bunches used for the seeding experiment. **Single-shot measurement** using a coherent radiation intensity spectrometer.
Transverse overlap

Superimposed beam profiles measured on Ce:YAG screen

$\Delta X, \Delta Y < 50 \mu m$

$\theta < 50 \mu rad$,

V. Miltchev, SSSFEL’12, 10-12/12/2012
Temporal overlap

- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps: streak camera
 - finally: time scan (100 fs steps)

 durations (FWHM):
 electron bunch 300-400 fs
 HHG seed pulse 20 fs
 Tolerance 100 fs
Temporal overlap

- temporal overlap
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps: streak camera
 - finally: time scan (100 fs steps)

 durations (FWHM):
 - electron bunch 300-400 fs
 - HHG seed pulse 20 fs
 - Tolerance 100 fs
Temporal overlap

- **temporal overlap**
 - down to 1 ns: photomultiplier + oscilloscope
 - down to 10 ps: streak camera
 - finally: time scan (100 fs steps)

 durations (FWHM):
 - electron bunch 300-400 fs
 - HHG seed pulse 20 fs
 - Tolerance 100 fs
With the LOLA transverse deflecting structure (TDS) one can measure the longitudinal phase space after sFLASH undulators ...

![Graph showing longitudinal phase-space characterisation](image)
Summary and outlook

• HHG seeding at $\lambda = 38\text{nm}$ demonstrated

• Energy contrast in the order of 10 possible.
• Power contrast ~ 100 possible; should be OK for (some) users.
• HHG relies on perfect control and stability.

Outlook
• Establish seeding quicker & reliably (use ORS-timing, online spectrometer, optimized bunch length, intrabunch RF feedback)
• Parallel operation with FLASH SASE
• Pilot pump-probe experiment
• THz streaking for photon pulse length measurement
• Tests of HGHG and EEHG at FLASH -> decision on FLASH II later
On behalf of the sFLASH team