BaDElPh Home

Welcome to the Low Energy-ARPES beamline @ Elettra

The Band Dispersion and Electron-Phonon coupling (BaDElPh) beamline provides photons in the energy range 4.6-40 eV with high flux, high resolving power, and horizontal-vertical linear polarization. The beamline serves an end station to perform primarily high-resolution angle-resolved photoemission spectroscopy (ARPES) experiments in the low photon energy regime. Photon energies lower than 15 eV provide enhanced bulk sensitivity, allow for the highest momentum and energy resolution, and are useful in tuning matrix elements which vary rapidly at low energy. The availability of such low photon energies makes BaDElPh unique among the other ARPES beamlines at Elettra and around the world.

Research highlights | Publications | Top Stories | Highlights booklet

CDW and weak Kondo effect in a Dirac semimetal

By combining ARPES and LEED measurements with DFT calculations, we have observed a robust CDW order and weak Kondo effect in a Dirac semimetal CeSbTe. This and related compounds may serve as an interesting material system to realize the long-sought axionic phase.

  Li et al., Sci. China Phys. Mech. Astron. 64, 237412 (2021).

Read More

Antiferromagnetic topological insulator

The realization of the first antiferromagnetic (AFM) topological insulator (TI) is predicted by theory and confirmed using various experimental techniques in the layered van der Waals compound MnBi2Te4. A large bandgap in the topological surface state of the (0001) surface is observed in high resolution ARPES.

  Otrokov et al., Nature 576, 416 (2019)

Read More

High quality MoS2 monolayers on graphene/Ir(111)

High quality MoS2 monolayers were grown by MBE on graphene/Ir(111). ARPES reveals that there is no hybridization between electronic states of graphene and MoS2. The weak MoS2-graphene interaction explains the observed photoluminescence in this system.

  Ehlen et al., 2D Mater. 6, 011006 (2019).

Read More

Spin-orbit gap in graphene

By means of ARPES and spin-resolved measurements, we show that intercalation of a Pb monolayer between the graphene sheet and the Pt(111) surface leads to formation of a spin-orbit coupling induced gap of about 200 meV at the Dirac point of graphene.

  Klimovskikh et al., ACS Nano 11, 368 (2017).

Read More

Rashba coupling amplification by a staggered crystal field

By means of ARPES and first-principles calculations, we give evidence of a large Rashba coupling leading to a remarkable band splitting in centrosymmetric  BaNiS2. This is explained by a huge staggered crystal field that breaks inversion symmetry at the Ni site.

  Santos-Cottin et al., Nat. Commun. 7, 11258 (2016).

Read More

Electron-phonon coupling and superconductivity in graphene

We have performed an high-resolution ARPES investigation to try to find an electron donor for graphene that is capable of inducing strong electron–phonon coupling and superconductivity. Calcium is the most promising candidate for realizing superconductivity in graphene.

Fedorov et al., Nat. Commun. 5, 3257 (2014);    Haberer et al., Phys. Rev. B 88, 081401(R) (2013).

Read More

Surface-enhanced CDW in underdoped Bi(2201)-cuprates

Using ARPES at low photon energy we have discovered a temperature-dependent evolution of the CuO2 plane band dispersion in underdoped Bi2Sr2-xLaxCuO6+δ (Bi2201). This effect is limited to the surface and point to a surface-enhanced CDW instability.

  Rosen, Comin et al., Nat. Commun. 4, 1977 (2013).

Read More

Main News


2020-02-24: Updated information for users are available in the User Area section, or you can contact the User Office and/or the relevant beamline coordinator.
We recommend users to consult also the beamline Safety section. Thank you for your cooperation.


2014-09-01: The BaDElPh beamline at Elettra has been included in the list of facilities accessible through the CERIC-ERIC call proposal. CERIC-ERIC offers access to several complementary facilities through a single proposal and a single access point. Submit your multifacility proposal by CERIC-ERIC Virtual Unified Office (VUO).

User Area

Proposal Submission

We invite users and collabrators to discuss their proposals with the beamline local contacts well in advance before the submission deadline. This is crucial for a careful assessment of the experiment feasibility and may lead to improvements in the proposed experimental plan. Our website provides a wealth of information on experiment feasibilty and proposal submission. For more info, please visit the user info section.

Call for Proposal

The deadline for proposal submission for beamtime allocation from January 1st to June 30th, 2022 will be September 15th, 2021.

Last Updated on Friday, 30 July 2021 15:35