GasPhase Beamline

Welcome to GAPH @ Elettra

The Gas Phase Photoemission (GAPH) beamline is the only one at Elettra specifically devoted to research on gaseous systems.
GAPH offers a multi-technique approach for investigation of electronic properties of free atoms, molecules and clusters in the photon energy range 13-900 eV.

The broad energy range, the high resolving power and flux together with the purpose built end-stations, make this facility ideal for investigating the spectroscopy and dynamics of basic processes like inner-shell and multiple excitations and ionisation, as well as for characterising key processes relevant to several areas of science and technology (for example atmospheric chemistry, material science and biomedical sciences).

Research highlights | Publications

Elucidating the 3d Electronic Configuration in Manganese Phthalocyanine

To shed light on the metal 3d electronic structure of manganese phthalocyanine we performed photoelectron measurements both in the gas phase and as thin film.  J.Bramboiu et al. JPCA 2014.

Read More

Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

 C1s Near-Edge X-rayAbsorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene) have been measured and compared to vibrationally resolved theoretical spectra. G. Fronzoni et al JCP 141 (2014).

Read More

Production of excited H at C1s edge of the methane molecule studied by VUV-photon-photion and metastable-fragment-photion coincidence experiments

Core ionization of a molecule just above the 1s ionization potential leads to recapture processes where the photoelectron is pushed back to a high Rydberg orbital of the molecular ion. Upon dissociation highly excited neutral fragments can be produced together with ions. 
Kivimaki A et al.  Phys. Rev. A 88 (2014) 043412

Read More

"Position” does matter: The photofragmentation of the nitroimidazole isomers

Experimental and theoretical spectroscopic methods have been combined to disentangle the fundamental mechanism of VUV induced fragmentation of the three isomers of nitroimidazole. P. Bolognesi et al.  J. Chem. Phys., (2016)

Read More

Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets

 We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets.. A. C. LaForge et al.; PRL 116, 203001 (2016)

Read More

Negative-Ion/Positive-Ion Coincidence Yields of Core-Excited Water

The analysis of negative-ion/positive-ion (NIPICO) and negative-ion/positive-ion/positive-ion coincidence (NIPIPICO) events provides new information on pathways leading to negative ion production in water.
C. Stråhlman et al.; J. Phys. Chem. (2016)

Read More


GAPH is one of the possible CERIC instruments:
CERIC-ERIC, the European Distributed Research Infrastructure, offers more than 40 different and complementary state of art techniques, distributed in 7 different coutries. A detailed description of also other facilities available in CERIC can be found here.
CERIC allows a wide range of methods for sample preparation and analysis in a flexible and project oriented way, through the submission of multitechnique proposals through a single entry point.

User Area

bProposal Submission

We invite users and collaborators to discuss their proposals with the beamline local contacts well in advance before the submission deadline. This is crucial for a careful assesment of the experiment feasibility and may lead to improvements in the proposed experimental plan. Our website provides a wealth of informaiton on experiment feasibilty and proposal submission. For more info, please vist the user info section.

Call for proposals

Next deadline for proposal submission: September 15th, 2016, for the user period starting from January 1st to June 30th, 2016

 All proposals requiring use of the laser will be performed at the branch line.


Last Updated on Thursday, 02 February 2017 15:01