
Upgrade Challenges at a 2nd Generation Light Source M.L. Marceau-Day CAMD/U.S.A. RadSynch09 Trieste, Italy

Outline: Challenges and Surprises

- A. 2nd RF cavity
- B. Removal of the Wiggler for new cryostat Surprise
- c. Discovery of a bad coil and implications
- D. Upgrade of the Linac
 - 1. Changes in the Linac Tunnel
 - 2. Current and Proposed Operating Conditions
 - 3. Interlock Considerations
 - 4. Energy and Power Calculations
 - 5. Changes in Radiation Intensity
 - 6. Testing Constraints
 - 7. Additional Health Physics Concerns
 - 8. Proposed Insertion Devices

A. 2nd RF cavity

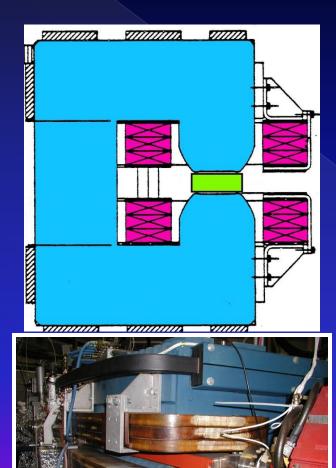
The 2nd RF cavity was installed adjacent to the first cavity in the existing long straight section.

- No radiation problems
- Initial upgrade in preparation for new Insertion Devices

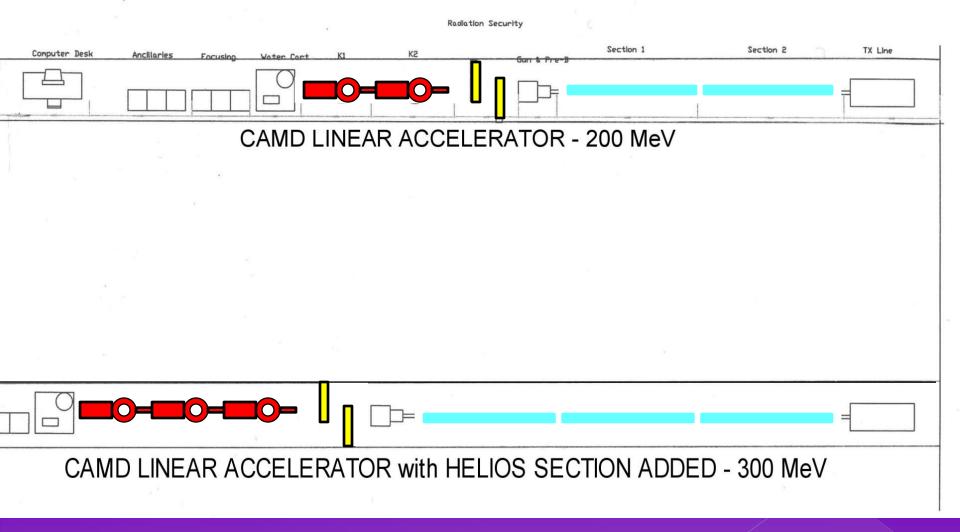
B. Removal of the Wiggler for new cryostat - Surprise

T wiggler was removed 20 cm shielding placed upstream of the wiggler Problem with radiation losses continued Verified loss source with use of exposed film with built-in ruler, then pinhole through 1.6mm sheet of lead to determine precise

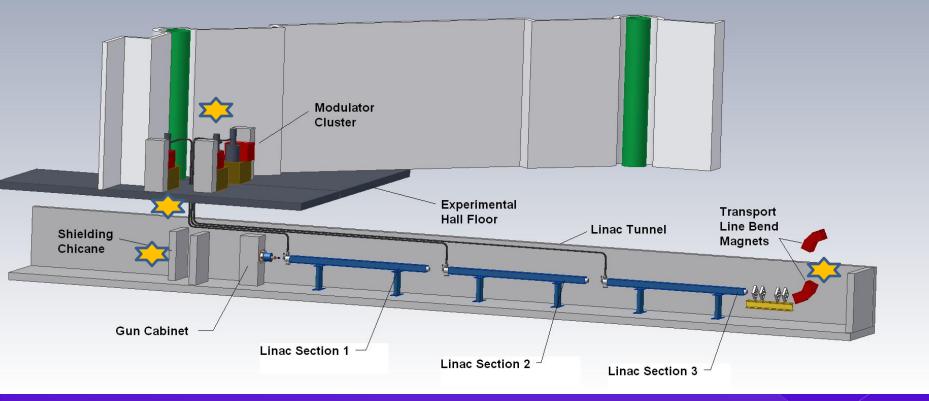
location.


Surprise

Slight concave BMP's failed to pick up


- Source point was identified
- BPM's indicated beam well-aligned
- Measurement indicated that beam pipe 9mm too low
- Beam gap 32 mm
- Beam hitting top of beampipe
- Realigned and 20 cm Pb added.
- Inside ring dose dropped from 70 and 72 mSv to only 38 and 32 μSv, repectively

C. Discovery of a bad coil and implications



- Intermittent short
- Requires daily new orbit and correction
- Correction through long straight that housed Wiggler
- New Pb placement continues to offer adequate shielding despite multiple orbits.

D. Upgrade of the Linac from 200 to 300 MEV

1. Changes in the Linac Tunnel

2. Current and Proposed Operating Conditions

Current Operational Parameters New Parameters

180 MeV	Up to 300 MeV [275 operating]	
Energy Spread % +/- 0.25	Energy Spread % +/- 0.25	
RF Frequency (MHz) 2998.2/499.7	RF Frequency (MHz) 2998.2/499.7	
Repetition Rate 1Hz	Repetition Rate 5 Hz	
Pulse Length 150 ns	Pulse Length 184 ns	
Current mA 15 - 30	Current mA 25	
Current Stability (%) +/- 25	Current Stability (%) +/- 15	

3. Interlock Considerations

- Move Chicane to accommodate new accelerating piece
- Rerun Linac RIS system
- New wiring required
- No broken links accepted
- Chain A and Chain B
- Individually armored
- Re-install rollerball microswitches
- Re-commission Linac
 Radiation Interlock System

4. Energy and Power Calculations

[eV] x [Hz] x [sec] x [Amperes]	Watts
Current	0.405
Approved	1.1
Upgrade	6.9

5. Changes in Radiation Intensity due to Linac Upgrade

ltem	Radiation Hazard estimate
Energy Increase	5 - 7.78
Frequency Increase	5
Time length increase	1.23
Tau	-3.38
Current Decrease	-0.2

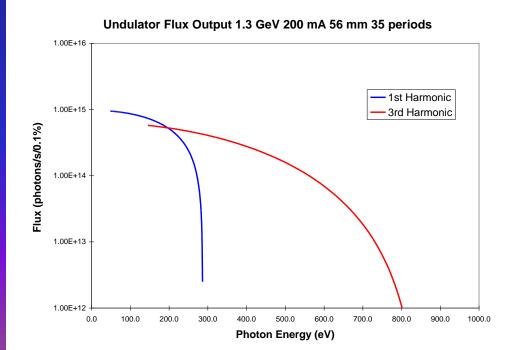
6. Testing Constraints

 Accelerating portions must be tested before being moved into Linac

- These sections are being assembled on the experimental hall floor
- User area will have to be closed/ locked to mitigate radiation hazards

 Local shielding may have to be supplied during test phase

7. Additional Health Physics Concerns


 No shielding supplied for new klystron

- Custom shielding lead time
- May narrow gap in magnets, could change trajectory
- Additional 5.1cm Pb required in vertical line

 New injection maximum of 412 mA

8. Proposed Insertion Devices

Insertion Device	Description	Beam Power @200 mA
7.5 T Multipole Wiggler	11 +2	18 kW
3.5 T Multipole Wiggler	25 + 4	2kW
VUV Undulator	35 periods of 56 mm	

So Much to do, so Little Time!

