5th Radsynch'09 – Elettra *Trieste*

Radiological studies during the ALBA Linac commissioning

ALBA Safety Group:

Ferran Fernàndez Xavier Queralt

Trieste, May '09

Introduction

1. ALBA linac

a. Machine description **b.LINAC** vault c. Commissioning results: beam specs 2. PSS overview a. Access control **b.** Radiation Monitors **3. Radiological measurements** a. Passive detectors: TLD b. Portable detectors c. Radiation Monitors Network 4. Next steps **Acknowledgements**

- ➤ 4 months commissioning: June'08-October'08
- Using temporal electrical & water cooling services
- > 2 operational modes: single and multibunch
- Maximum beam energy: 107 MeV
- Influence of 2 main components: BM and Cu scrapper
- First radiation measurement for the ALBA linac
 First test of the PSS and radiation monitor network
 3 types of radiation measurement: passive, portable and on-line network

ALBA LINAC RF COMPONENTS (Thales manufacturer)

• Electron Gun :

Thermoionic (Pierce type), 90 kV DC gun with grid modulator at 500 MHz

3/45

Bunching Section:

Prebuncher: single cell @ 500MHz **Prebuncher: single cell @ 3 GHz** Buncher: 1 SW bunching section @ 3GHz Energy at the bunching section output = 16 MeV Low electron losses

• <u>2 ACCEL. SECTIONS</u>: Energy gain= 55 MeV @ 20MW nominal input power.

 <u>2 Klystron modulators</u>: 35MW each klystron at 3GHz. The first one feeds the 3GHz bunching section and the 1st acc.structure. The second one feeds the second accelerating structure

ALBA LTB MAGNETS and DIAGNOSTIC COMPONENTS (designed & installed by ALBA)

1a. Machine description: Service Area

ALBA linac entrance and control: present configuration

1b. LINAC vault

1b. LINAC vault

1c. Commissioning results: beam specs

Multibunch Mode ALBA Linac Parameters:

Parameter	<u>Specs</u>	<u>Measured</u>	
Pulse length	0.3 to 1µs	0.112 µs (*)	
Charge	≥3nC (in 1 µs)	4 nC	
Energy ≥100MeV		107 MeV	
Pulse to pulse energy variation	≤0.25 % (rms)	0.06 % (rms)	
Relative energy spread	≤0.5 % (rms)	0.23 % (rms)	
Norm. Emittance (1o)	≤30 π mm mrad (both planes)	< 25 π mm mrad (both planes)	
Pulse to pulse time jitter	≤100ps (rms)	25 ps (rms)	
Repetition rate	3 to 5 Hz	1-3 Hz (**)	

(*) Optimum length according to Beam Dynamics Simulation is 112 ns
 (**) Tested at 1 and 3 Hz

1c. Commissioning results: beam specs

Single bunch Mode ALBA Linac Parameters:

Parameter	<u>Specs</u>	Measurements	
Pulse length	1ns (FWHM)	0.4 ns	
Charge	≥1.5nC	2 nC	
Energy	≥100MeV	107 MeV	
Pulse to pulse energy variation	≤0.25 % (rms)	0.08 % (rms)	
Relative energy spread	≤0.5 % (rms)	0.28 % (rms)	
Norm. Emittance (1σ)	<i>rm. Emittance (1σ)</i> \leq 30 π mm mrad (both planes)		
Single bunch purity Better than 1%		< 2 %	
Pulse to pulse time jitter	≤100ps (rms)	25 ps (rms)	
Repetition rate	3 to 5 Hz	1-3 Hz (**)	

12 / 45

(**) Tested at 1 and 3 Hz

2. PSS overview

PSS-LINAC components: > PLC-SIL3 technology > Acts on:

- e-Gun
- RF
- •BS Shutter
- Pilz manufacturer

	PLC	1
	Pulsador de patrulla "Search button"	5+2
-	Seta de emergencia	6
-	Puerta	1
D	Armario principal del PSS con botones y paneles de llaves	1
	Sirena y luz intermitente	1
	Paneles luminosos : BEAM ON, OPEN, RESTRICTED, INTERLOCKED	2
	Monitor de radiación	4 (not included)
	Pulsador para abrir la puerta desde dentro	1
0	Altavoz	1
	Salidas para matar el haz de electrones	4

2a. PSS: Access control

2a. PSS: Access control

2b. PSS: Radiation Monitors Network

Radiation Monitor Network (19 + 4 + 1 Fixed; 3 + 3 + 3 on trolleys: TOTAL 33):

2b. PSS: Radiation Monitors Network

2b. PSS: Radiation Monitors Network

Fixed detector distribution (D1 y D2) and Trolleys (T1, T2, T3, T4 y T5)

18/45

3. RADIOLOGICAL MEASUREMENTS

a. Passive Detectors: TLD (IN & OUT)

- **b.** Portable Detectors
 - Survey: OUT
 - Activation: IN
 - Spectrometer: IN
- c. Radiation Monitors Network (OUT)
 - Bending Magnet scans
 - Scrapper aperture scans

3a. TLD LOCATION

20/45

3a. TLD LOCATION

12 different TLD points NOT @ 140 cm

) n

A5

Radiological studies during the ALBA Linac commissioning - X. Queralt and F. Fernandez

• 9

3a. TLD DATA: RF CONDITIONING ÁLBA 0mSv 0mSv June '08: After 95 hours of conditioning 🧈 OmSv 0mSv All TLDs at apertures 0mSv € 0.2mSv 3mSv HAT THE 0.5mSv 0mSv 0mSv 0mSv 60mSv 0mSv 135mSv 0mSv 0mSv 0mSv

0mSv

23/45

ALBA 3a. TLD DATA: SUMMARY

TLDs data inside the bunker by month:

All the other TLDs have measured 0 mSv

3b. PORTABLE DETECTORS

a. Control Room

Trenches
Door
Door
RF labyrinth
Alignment Windows

b. Roof (~3µsv/h)
c. Tunnel (*front wall ~2µsv/h*)
i. Alignment Windows
ii. Trenches

Radiological studies during the ALBA Linac commissioning - X. Queralt and F. Fernandez

DOSE RATE

<0.5 µSv/h

3b. PORTABLE DETECTORS: SPECS

COMPANY	MODEL	ENERGY RANGE	DETECTION RANGE
THERMO	SmartION Mini 2100S	>10keV	0-500mSv/h
FLUKE	Victoreen 451P	>25keV	<50mSv/h
THERMO	FH40 G-L10	>30keV	10nSv/h - 100mSv/h
THERMO	FHZ 672 E-10:	48 keV - 4.4 MeV	1nSv/h - 100mSv/h
THERMO	RadEye PRD	30 keV – 1.3 MeV	0.01 µSv/h – 250 µSv/h
THERMO	FHT 752 SH		0.01 - 100,000 cps
THERMO	RadEye N		>0.005 cps

3b. PORTABLE DETECTORS: DATA

ALBA 3b. DATA @ KLYSTRONS

3b. PORTABLE DETECTORS: RESTRICTIONS

3b. PORTABLE DETECTORS: TODAY

3b. PORTABLE DETECTORS: AREAS DATA

Portable detector measurements for the Sep 26th '08, for different locations outside the bunker

31 / 45

3b. PORTABLE DETECTORS: ACTIVATION

3b. PORTABLE DETECTORS: ACTIVATION

Measurements on surface (Sep 26th '08):

3b. PORTABLE DETECTORS: ACTIVATION

Gamma dose rate at the BM vacuum chamber exit

3c. Radiation Monitors Network-RMN

D2 Gamma DR (uSv/h)

Radiological studies during the ALBA Linac commissioning - X.Queralt and F.Fernandez

September 16th '09

3c. RMN: Cu SCRAPPER DATA

Gamma dose rate due to the Cu scrapper scans

3c. RMN: Cu SCRAPPER DATA

3c. RMN: LOCAL SHIELDING

3c. RMN: LOCAL SHIELDING EFFECT

3c. RMN: NEUTRON SCRAPPER DATA

Neutron dose rate due to the Cu scrapper scans

40 / 45

3c. RMN: ACCUMULATED DOSE

Total accumulated dose (maximum values):

3c. RMN: "OTHER" MEASUREMENTS

- 1. Re-start the ALBA linac: Sep'09
- 2. Recover the previous linac values with the final services
- 3. Install 2 local screens to reduce the external dose during commissioning
- 4. Foreseen linac shifts dedicated for Radiation Measurements
- 5. Make a correlation between gamma&neutron DR6. Add an interlock signal to the BM

43 / 45

- ✓ Thales Company: D.Jousse and A.Setty
- ✓ ALBA Accelerator Division: D. Einfeld team
- ✓ ALBA Control&Computing Division: J. Klora team
- ✓ Radsynch Colleagues
- ✓ Radsynch Organization

5th Radsynch'09 – Elettra *Trieste*

✓ Many Thanks!

