

Radiation Protection at the PETRA III Photon Beamlines

J. Knabe, S. Lessmann-Bassen, A. Wefer, T. Wroblewski DESY, Hamburg, Germany

Radiation Protection at the PETRA III Photon Beamlines

J. Knabe, S. Lessmann-Bassen, A. Wefer, T. Wroblewski DESY, Hamburg, Germany

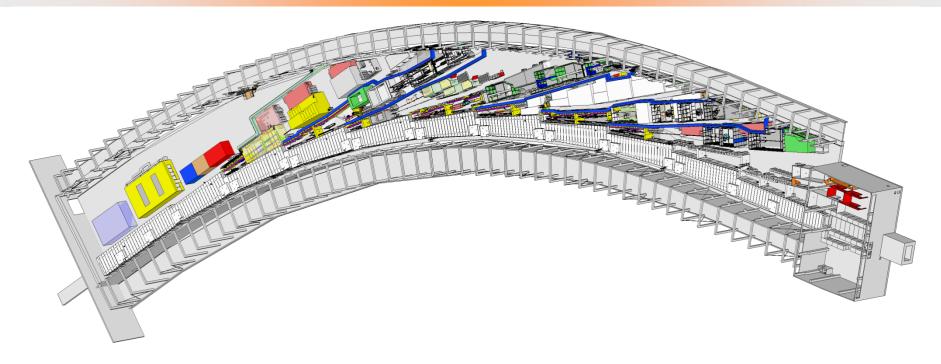
The PETRA III Project:

- The Source
- Front End
- Optics Hutches
- Experiment Hutches
- In between
- Measurements and Monitoring

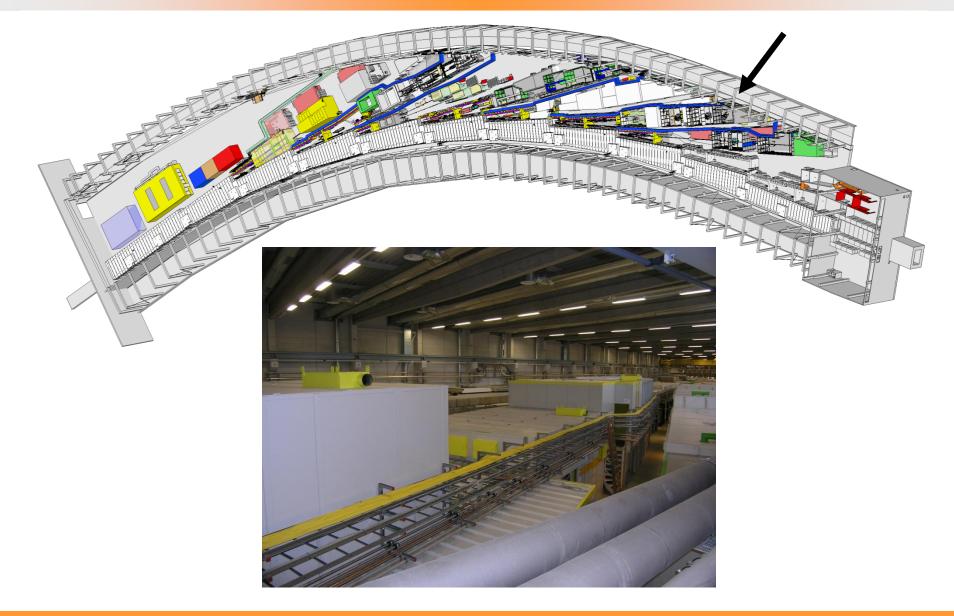
The experimental hall

Machine parameters: 6 GeV, 100 (200) mA Top-up 2.304 m 1 Octant, 9 Sectors (<5°) **14 Undulators** (5*2 2m, {5 mrad} 5m, 3 10m) 1

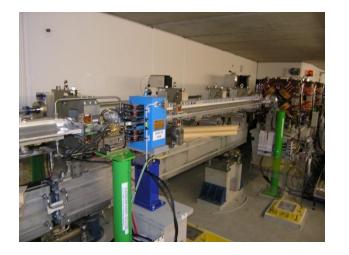
One year ago



Then and now



Then and now

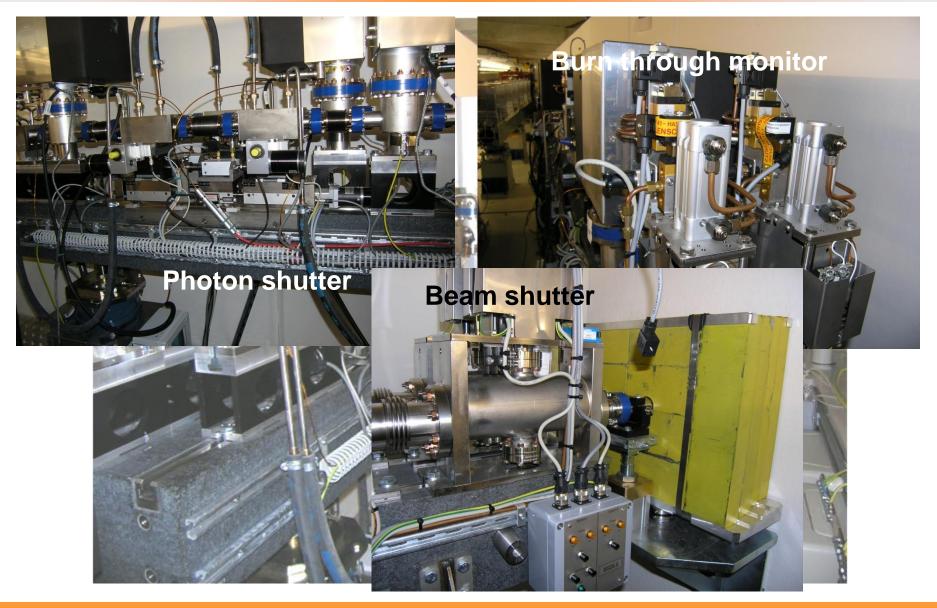


The source

Vacuum chambers

Insertion device

Slits and shutters



Slits and shutters

Optics hutches

Optics hutches

Liquid nitrogene in optics hutches

~ 15 I liq. N2 in secondary circuit

→ at least 16% O2 In case of sudden release in smallest hutch

Nevertheless, operation only after search (Interlock)

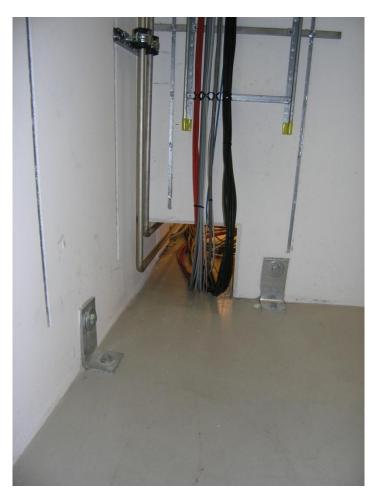
Liquid nitrogene in optics hutches

~ 15 I liq. N2 in secondary circuit

→ at least 16% O2 In case of sudden release in smallest hutch

Nevertheless, operation only after search (Interlock)

Stiff tubes


Feedthroughs

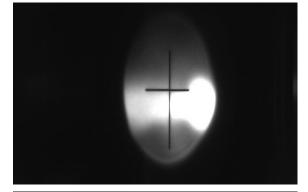
Media for optics

and front end

First beam

First beam

First light 30.4.09 ~15:00





First light 30.4.09 ~15:00

2 W

1 W

Feedthroughs

BL	Length [m]	period length [mm]	magnet. Field [T]	E _{Max} [keV]	Bandwidth	side wall [mm]	Backwall [mm] >115cm <115cm		beamstop 30cmx30cm [mm]
P01	20	32	0.91	40					
P02	2	22	0.8	60					
P03	2	29	0.81	25	1%	6.5	7	7	20
P04	5	65.6	1.1	3					
P05	2	29	0.81	50	1%	10	11	11	20
P06	2	31.4	0.91	120	1%	16	30	45	80
P07	4	19	0.7	300	1%	10	20	30	60
P08	2	29	0.81	30	0.01%	5	11	11	30
P09	2	31.4	0.91	50	0.01%	5	11	11	30
P10	5	29	0.81	25	1%	7	6	7	20
P11	2	31.4	0.91	25	0.01%	4.5	5	5	20
P12	2	29	0.81	20	1%	3.5	3.5	3.5	20
P13	2	29	0.81	35	1%	14	18	18	30
P14	2	29	0.81	35	1%	14	18	18	30

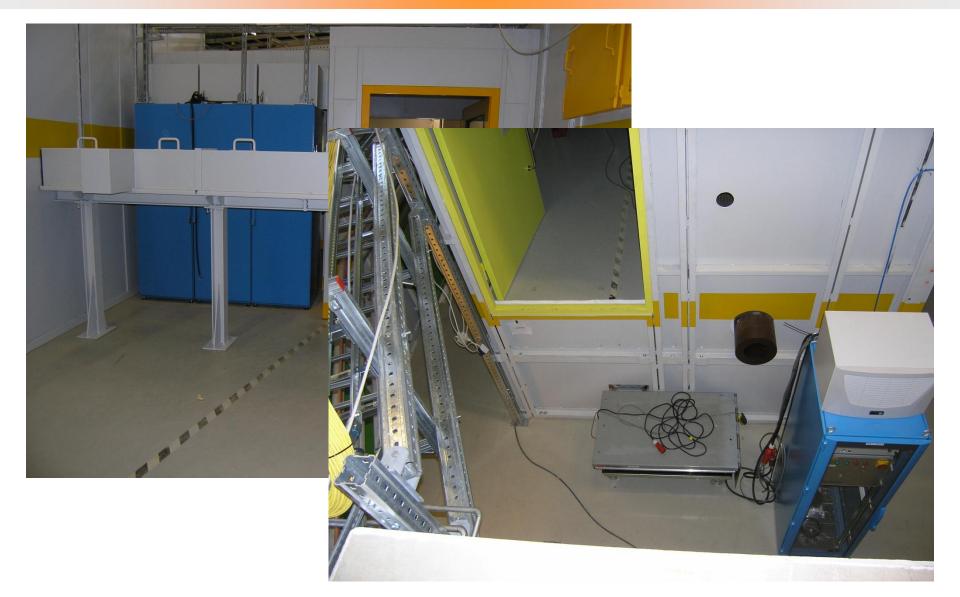
Based on calculations by Y. Asano

Experimental hutches

Experimental hutches

User chicanes

Beam tubes



Beam tubes

Who can do the measurements ?

Who can do the measurements ?

Radiation monitoring

Active radiation monitors (acting on beamshutters, 35 keV - 1.3 MeV)

Additional passive dosemeters (readout regulary, 15 keV - 9 MeV) At DORIS during service week

Start at first beamlines with high density and frequency

- Shut down of PETRA II on 1.7.2007
- All optics hutches finished
- First beam (~1mA) in optics hutch
 - Concept of chicane in back wall ok
 - **o** Chicanes in side walls need improvement (sand bags)
- Experimental hutches for 6 beamlines finished
 - o (Sekt. 2, BL3; Sekt. 4, BL5; Sekt.5, BL7; Sekt.6, BL8+9; Sekt. 7 BL10)
- Experimental hutches for 4 further beamlines ordered
- Shielding for several beam tubes / optics designed / ordered
- Comissioning of first monochromator in June
- Followed by first experiments

Thanks to all who have contributed to such a fast comissioning

Thank you for your attention