

SIMULATIONS OF CACO AND IOTs Beatriz Bravo

Overview

□ Introduction

□ How does the asymmetrical mode work?

- Proposal of a solution
- Conclusions

- □ At Alba there are 6 cavities in the storage ring. Each one is fed by two IOT.
- During the CWRF at Alba the asymmetrical mode was used for the first time.

Asymmetrizzalmoote

- This project has been developed by:
 Francis Perez, Paco Sánchez, Borut Baricevic, Michel Langlois
- □ Caco is an electromagnetic resonator and is formed out of three ports.

- \Box Caco is fed by the left arm.
- The standing wave pattern in the resonator is coupled to port 2 and port 3.
 Half of the incident power leaves port 3.

Beatriz Bravo

Beatriz Bravo

How does the asymetrical mode works?

IOT without beam

- □ It was characterized by a NVA.
- □ It was found equivalent to a short circuit.
- \Box All the incident power is delivered to the port 3
- □ At real operation at Alba:
 - $\hfill \Box$ It was no detected power flow in the passive arm
 - □ The power delivered to the Port 3 was the same than the incident power.

How does the asymetrical mode work?

LB

How does the asymetrical mode work?

□ Simulation of IOT and Caco

Looking for a solution

Stub tuner

- □ Stub tuners introduce simultaneous adjustment of both phase and amplitude of the reflection coefficients.
- □ The vertical position of the stub in the coaxial controls the amplitude of the reflection and the horizontal position the phase.
- □ High reflections in a coaxial waveguide are created by positioning the RF probe close to the central conductor.

Design of the stub tuner

• Shape of the stubs

Circular

Rectangular

- Length and width of each stub
- Number of stubs
- Position of the stub along the coaxial w.g
- Distance between the stubs.

Optimized for the best performance in symmetrical and asymmetrical mode.

□ Final design and results

Symmetrical mode

Asymmetrical mode

		Number stubs	4
		Distance between the stubs	90 degrees
		Position respects Caco	236 mm away
		Length	100 mm
		Width	20 mm
		S21	-53 dB
		Power loss	10 W
		Efield max around the stubs (scaled for 80000 RMS)	14000 V/m
	a manufacture of the second of the second		

□ Final design and results

 \Box Passive IOT Vgap = 125 V

- □ In the asymmetrical mode: A standing wave is formed between the passive IOT and Caco. **Consequence:** the gap of the passive IOT sees Vgap = 64kV
- □ A method is proposed for using stubs tuner to solve this problem. The Vgap is reduced from 64kV to 125 V.
- □ A prototype will be built and tested. The results in the next RF meeting.

- □ Michel langlois for helping us to understand why the ceramic of the passive IOT broke
- □ **RF group: Francis, Paco, Angela** for taking time for consultation and discussions despite the eventful months around the commissioning.
- **Filip Mares** for his support in the mechanical design of the stubs.

Thank you very much for your attention

Beatriz Bravo