Status of the new LLRF for ASTRID and ASTRID2

Jørgen S. Nielsen Institute for Storage Ring Facilities (ISA) Aarhus University Denmark

ASTRID2

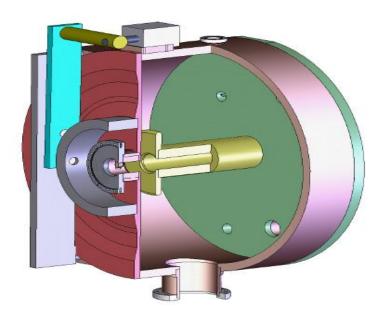
- ASTRID2 is the new synchrotron light source being built in Århus, Denmark
- ASTRID2 main parameters
 - Electron energy: 580 MeV
 - Emittance: 12 nm
 - Beam Current: 200 mA
 - Circumference: 45.7 m
 - 6–fold symmetry
 - lattice: DBA with 12 combined function dipole magnets
 - Integrated quadrupole gradient
 - 4 straight sections for insertion devices
 - Will use ASTRID as booster (full energy injection)
 - Allows top-up operation

ASTRID2 Layout

ASTRID2 Status

- Most major components, except RF cavity, will be delivered Jan. 2011
 - magnets on girders, fast magnets, magnet power supplies
- Vacuum chamber is being finalized
- Timeline
 - 2011: Installation and commission synchrotron
 - 2012: First beamlines on ASTRID2
 - 2013: All beamlines transferred to ASTRID2

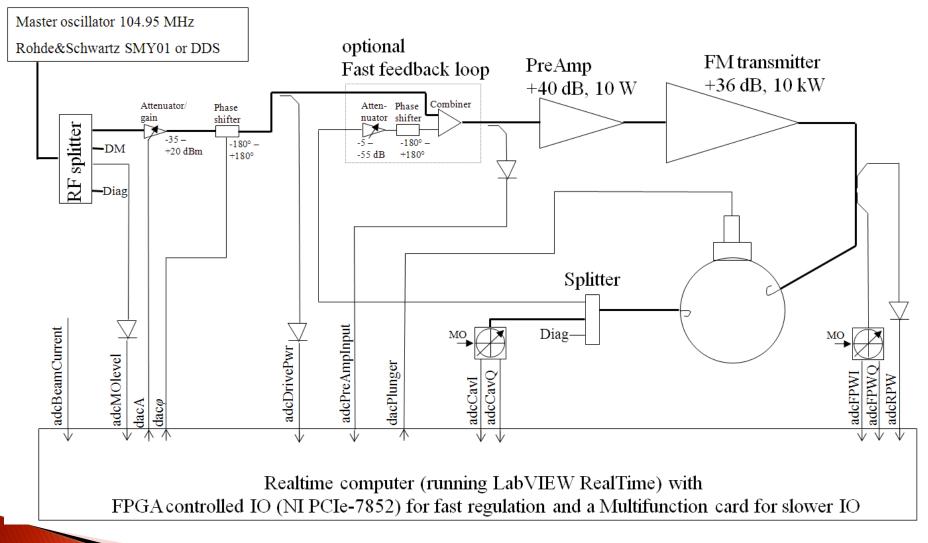
ASTRID2 RF


- 105 MHz (like ASTRID)
- Main RF parameters
 - Harmonic:
 - RF voltage:
 - Synchrotron frequency:
 - Synchrotron radiation power:
 - Cavity power:
- 5-12 kW FM transmitter
 - Most likely a solid-state amplifier, but a tube-based amplifier is not ruled out

16 50-200 kV 10-20 kHz ~1.4 kW 0.8-12 kW

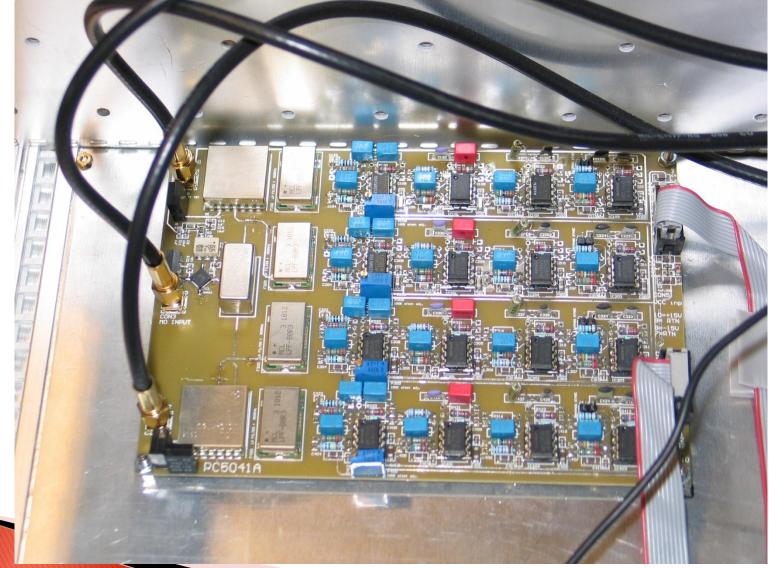
ASTRID2 Cavity

- Collaboration with MAX-lab
 - MAX-lab needs 8 cavities (100 MHz) for MAX IV
 - We need 2 cavities (105 MHz) (spare for ASTRID)
 - New MAX-lab cavity
 - Based on MAX II cavity
 - Use Electron Beam Welding instead of vacuum brazing
 - Have industry build after MAX-lab RF design
 - Tender: Soon
 - Expect to get a 315 MHz Landau cavity



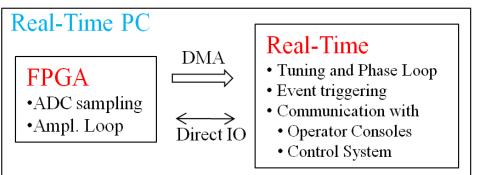
New ASTRIDx LLRF

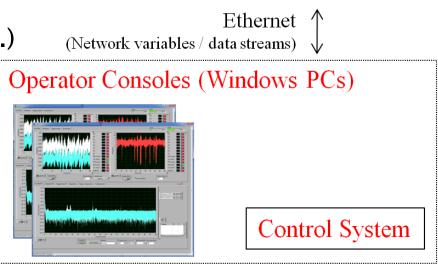
- We are currently making a new LLRF for ASTRID
 - Same system to be used for ASTRID2
- Digital control of baseband signal
 - Detection: IQ demodulators with low pass filter
 - ±180° phase detection
 - Control: Amplitude and Phase (voltage controlled)
 - A computer (PC) running LabVIEW Real-Time with FPGA equipped multifunction card to measure and control the baseband signals
 - NI PCIe-7852R:
 - Virtex 5 FPGA, 8 AI, 750 kS/s/ch, 8 AO, 1 MS/s/ch, 16 bit
 - Amplitude Loop is implemented on the FPGA
 - Tuning Loop and Phase Loop will be implemented in the Real-Time program



ASTRIDx LLRF implementation

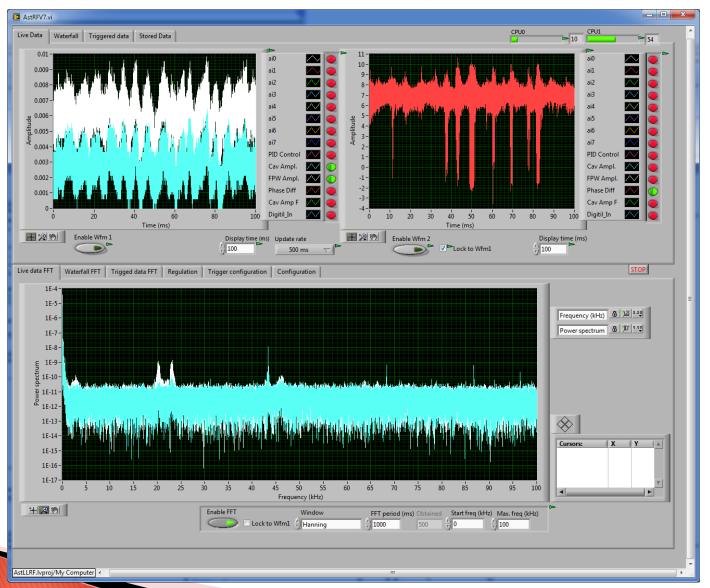
IQ demodulators (2 channels) with 100 kHz lowpass filter


System with 3 LabVIEW programs


FPGA

- Data acquisition (8 channels, 500 kS/s)
 - Data are transferred via DMA to Real-Time program
- Amplitude Loop

Real–Time


- Tuning and Phase Loop
- Event Triggering (store interesting events)
- Communicate with
 - Display Program (Host App.)
 - Control System
- Host Application
 - Operator Console
 - Displays the data
 - FFT for waterfall plot

Screendump of LLRF program

ESLS-RF 14 (29-30/9 2010), ASTRID and ASTRID2 new LLRF

Experience with LabVIEW FPGA

- Much easier than VHDL (for us)
- But still need to understand FPGA details
- LabVIEW environment was not stable enough
 - LabVIEW 2009 SP1: PID toolkit often made FPGA compilation fail
 - Solved in LabVIEW 2010
 - Examples was not quite good enough
- We underestimated the development time!
 - More complex than expected
 - Long compile time slowed down development

Status of LLRF

- Currently prototyping RF parts
 - Have a working IQ demodulator
 - Testing voltage controlled attenuator
- Software
 - FPGA program is fully working
 - Acquisition with DMA to Real-Time
 - Amplitude Loop
 - Real-Time is basically finished
 - Missing tuning and phase loop
 - Host application is basically working
- First test of closed amplitude loop with beam successful

We expect to bring the system into operation in December

