Review of Diamond SR RF Operation and Upgrades

Morten Jensen on behalf of Diamond Storage Ring RF Group

Agenda

Stats X-ray and LN2 pressure results Cavity Failure Conditioning in the RFTF Cavity Simulations IOT Upgrade Helium Refrigerator update

RF MTBF of beam loss and Number of beam

X-ray measurements on the cavities

LN2 supply pressure stability improved

LN2 Pressure stability improved by the installation of pressure and level control valves on the LN2 supply tank Ongoing investigation to determine residual perturbation

Cavity 2 Failure

Cavities 1 and 2 installed and being warmed up over Christmas. Warming up the cavities requires the use of electrical heaters. Procedure and Manual did not include turning off heaters. Heaters were not interlocked.

→ Heaters were left on!

First sign: Leak from helium can to insulation vacuum

Cavity 2 Failure

Investigation revealed:

- Both Helium level sensors not functioning
- Main pickup and waveguide coax cables have short circuit (both in helium can).
- Some of the temperature sensors on the niobium cell have been unsoldered.

Cavity 2 Failure

Additional observations not related to the increase in temperature

Copper Plating Problems

Peeling copper plating on most pickups and missing plating inside the cups

Marks on copper plating in the waveguide. Staining or tracking marks?

Damaged plating in waveguide section

Copper Plating Problems

Discolouration of waveguide components and of the gasket

Staining or damaged plating in the corners of the waveguide

5 - 8 January: Cavity 2 removed from tunnel and make up vessel installed.

9 - 10 January:
Cavity 1 cooled down – noticed that no level sensors were usable and RF pickup cables short circuited.

10 January (Sunday night): Controlling level by controlling total inventory. RF control via spare RF cable on the beam pipe.

11 January: Machine start-up

Then move on to Radiofrequency Test Facility commissioning, cavity installation and conditioning in RFTF.

Conditioning of cavity 3 inside RFTF

Initial conditioning in February 2010. Gradual increase in cavity voltage and power dips caused by fast vacuum protection during conditioning can be seen.

Soak test in April. Time scale is kept the same as last slide. Improvement in long term performance can be seen clearly.

Infrared pictures of RF window during conditioning

84KW forward power, cavity on resonance

55KW forward power, detune angle -60degree

Window heated up to 30 degree

2 Q0 measurement showing Q0 drop at low voltage

Partial warm up to 28K to release hydrogen.

Warm up can help with the vacuum but not necessary the long term performance of the cavity

Vacuum is better after partial warm up. But many vacuum spikes appeared. Some spikes triggered protection.

PMT signal during conditioning

PMT signal showing probe blip

Probe problem

- 1. Main probe and e- pickup have failed.
- 2. Cavity 2 and 3 both suffer probe blips. Cavity 1 under investigation.
- 3. Probe blips happen with and without beam.
- 4. Probes don't have blips at the same time.
- 5. Probe blips don't always trip the beam.
- 6. Very high amplitude.
- 7. Not successful to filter it out. (Band pass filter, DC block)
- 8. Not successful with bias voltage.

Observed probe 'blips' kicked off wake field simulation of the RF probes

Snapshot E-Field at t=1.05 ns for 10 & 3 mm bunches, yz-plane

The field at the DLS pick-up has decayed by the time the bunch passes the CLS pickup and therefore appears to be lower.

Frequency content of Voltage Signal

Summary:

Diamond beam ($\sigma = 3 \text{ mm}$) excites stronger signal in the pick-ups compared to the CLS and CESR ($\sigma = 10 \text{ mm}$) beams for the same charge.

The DLS Pick-ups have larger diameters and so the signal induced will be stronger.

Risk of breakdown and wakefield effects are greater for the DLS pickup but unlikely to be the main reason for our beam trips.

Multipactor simulation of the DLS Cavity & Waveguide

To establish TW fields in the waveguide

Development of Multipactor, P = 200 kW PIC Solver

Exponential growth of number of particles indicate

CST model for Multipactor study near Coupling tongue

Preliminary tracking solver Results

Eigen mode field scaled to 1 MV across cavity

DLS IOT Upgrade from TED to E2V IOTs

TED IOT

E2V IOT

DLS IOT Upgrade from TED to E2V IOTs

• Successfully upgraded Systems 1 and 2 from TED to e2v IOTs during Christmas 2009 shutdown

Advantages

- Reduced IOT trips
- Simple tuning and setup with indexed settings
- Built in radiation shields no lead required
- Ion Pump readily recovers vacuum during initial filament start up

Differences

- Cavities built around IOT
- Cathode at the top inside the input cavity
- Network analyser not required for tuning

Current IOT Operating Hours

	ezv					
		Hrs in user	Hrs	Hrs		
	S/N	operation	(Spares)	(Failed)	Status	Notes
IOT11	224-0711	2467				
IOT12	290-0939	996				
IOT13	211-0647	18976				
IOT14	212-0647	18839				
IOT31	289-0938	4269				
IOT32	287-0931	4264				
IOT33	273-0907	5624				
IOT34	288-0935	4265				
IOT22	223-0710	15327			Grid emmission	Waiting for grid outgassing
	210-0647	14853			Suspect	Under investigation for tripping
IOT21	268-0851		1040		Spare	
	205-0639			1219	Failed	During initial commissioning
	222-0710				Spare	Unused
12	269-0904				Spare	Unused
	277-0909		510		Spare	

2009: 19 trips during 4300 operational hours (mostly TED IOTs)

2010: 9 x ISCs: 5 during initial run with new tubes

4 in a quick succession on single IOT

Typical Operating Conditions (S/N 268-0851)

HV (kV)	Pin (W)	Pout (kW)	Ib (A)	Eff (%)	Gain (dB)
-35	159	35	2.0	50	23.5
-35	234	50	2.6	55	23.31
-35	352	80	3.29	67	23.4

Efficiency During Initial Tune/Set Up (S/N 268-0851)

Current measurement board affected by change from TED to E2V IOTs

Original e2v configuration

Current measurement board affected by change from TED to E2V IOTs

Earth current directed through IOT current transducers

Body current components removed

Problem:

Speed sensing of the warm turbine has occasionally become erratic without prior warning.

Repair:

After ensuring that the fibre optic cable was properly mounted, part of the signal conditioning box was changed.

The problem reoccurred. The frequency to analogue converter was then replaced. There has been no reoccurrence.

Thank you for your attention

