

14th ESLS RF Meeting 2010 ELETTRA, 29th – 30th September

ESRF RF System Status – Operation & Upgrade

Jörn Jacob, ESRF

on behalf of the colleagues of the RF Group and many other ESRF Groups

European Synchrotron Radiation Facility

Existing Operation at 200 mA

- 1.3 MW klystron transmitters: Redundancy in case of any transmitter failure (waveguide switching)
- Suppression of HOM driven Longitudinal Coupled Bunch Instabilities by Cavity Temperature regulation

Current upgrade to 300 mA

- No transmitter redundancy
- Need LFB to stabilize HOM driven instabilities
- Increased voltage to master Robinson Instability

Long term

 Only 1 manufacturer left for this type of klystrons
 possible obsolescence

 $R/Q = 139 \ \Omega / cell$ Qo = 38500 $Rs = 26.8 \ M\Omega \ (5 \ cells)$ $V_{nom} = 1.4 \ ... \ 2.5 \ MV$ $2 \ couplers: \ \beta_{max} = 4.4$ $Max \ 170 \ kW \ / \ coupler$

European Synchrotron Radiation Facility

14th ESLS RF, ELETTRA, 29-30 Sept. 2010 J. Jacob: ESRF RF Status - Operation & Upgrade

Existing 352.2 MHz ESRF RF system

Problem with SR Cavity 5:

1997 installation in the machine

- Bad welding joint on tuner ports, scraping the piston
- 2007 Leak developed on 1 tuner port: 300 mA tests had to be stopped
- 2008 Replaced with spare cavity, however: bad conditioning with beam due to a previous accidental venting during storage ⇒ no 300 mA test

2010 Re-installation of repaired cavity 5 but still problem with 1 coupler:

- Degassing
- Glow discharges
- Nevertheless: successful resuming of 300 mA tests
- Exchange of coupler in August
 2010 solved vacuum problems

Cell 25 Cav 5 & 6

RF upgrade project

- 18 new single cell HOM damped 1. cavities
- 2. Solid State Amplifiers
 - 4 x 150 kW SSA for the Booster CP-
 - 18 x 150 kW SSA for the Storage Ring œ
 - Phase 1: 7 SSA manufactured by ELTA F
- 3. In house development of SSA using a Cavity Combiner
- **Cavity Power couplers** 4.
 - New Spare couplers / existing design \geq with improvements
 - Improved conditioning method >
 - CERN/ESRF/SOLEIL collaboration for \geq new couplers using LHC window design

1. Single cell NC HOM damped cavity prototypes

DESIGN, checked with aluminum model

All the **longitudinal HOM impedances** are well below the threshold of 1A / 18 cavities

* This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.

3 power prototypes in fabrication:

- validate the design
- validate 2 different manufacturing procedures
- qualify 3 companies: RI, SDMS, CINEL
- obtain 3 operational cavities for ID23

European Synchrotron Radiation Facility 14th ESLS RF, ELETTRA, 29-30 Sept. 2010 J. Jacob: ESRF RF Status - Operation & Upgrade

2. Contract for 7 SSA of phase 1 with ELTA

- Offer essentially along the initial SOLEIL design
- New 6th generation LDMOS-FET transistors allow for a more compact design with only 2 towers to obtain 150 kW:

 $315 \text{ W} \rightarrow 650 \text{ W}$ per module

Coaxial combiners: 650 kW x 8 x 8 x 2 – losses = 75 kW / tower

- November 2009, contract with ELTA for:
- > 4 x 150 kW SSA for the booster (10 Hz pulsed operation)
- > 3 x 150 kW SSA for the SR (CW operation)
- First 75 kW tower built in close collaboration between SOLEIL and ELTA (transfer of technology)

SOLEIL 315 W module

SOLEIL 300 V / 30 V dc-dc converter

Schedule:

•

• February 2010: Successful test of the first RF module, validation of the design:

η_{module} > 72 % (measured)

- \Rightarrow expected total η_{SSA} > 55 % (> spec)
- July 2010: Successful test of the first combination of 16 RF modules, including 500 hours ON/OFF fatigue test (7500 x 4 min on/off cycles)
- February 2011: Acceptance test of the first 75 kW tower at ESRF
- January 2012: commissioning of the 4 x 150 kW SSA connected to the ESRF booster cavities
- August 2012: commissioning of 3 x 150 kW SSA connected to the first 3 single cell HOM damped cavities in cell 23 of the Storage Ring

8

400 V ac / 280 V dc power supply for the booster SSA

European Synchrotron Radiation Facility 14th ESLS RF, ELETTRA, 29-30 Sept. 2010 J. Jacob: ESRF RF Status - Operation & Upgrade

3. R&D – SSA using a Cavity Combiner [M. Langlois, ESRF RF Group]

ALBA Cavity Combiner:

- MWS design / ALBA
- 100 % match for 2 IOTs
- One IOT off and detuned:
 - ⇒ Adjust tuning plunger in output waveguide
 - ⇒ Re-establish match > 99%

For ESRF application:

• 6 raws x 22 Columns x [600 ...800 W per transistor module]

 \Rightarrow 75 … 100 kW

 More compact than SOLEIL type coaxial combiners

Coupling: $\beta_{waveguide} \approx n_{module} \times \beta_{module} >> 1$

- Easy to tune if $n_{\mbox{module}}$ is varied
- Substantial reduction of losses \Rightarrow higher η

European Synchrotron Radiation Facility

14th ESLS RF, ELETTRA, 29-30 Sept. 2010 J. Jacob: ESRF RF Status - Operation & Upgrade 11

Strongly loaded E₀₁₀ resonance

- Modest field strength
- Cavity at atmospheric pressure
- 1 dB Bandwidth \approx 500 kHz

H field Homogenous magnetic coupling of all input loops

Strong capacitive coupling to the output waveguide

- SSA with Cavity Combiner
 - Mechanical design almost ready to build a 12 kW prototype (18 modules)
 - Main goal: develop an adequate electrical & mechanical interface between RF modules & cavity
- In parallel:
 - In house development of amplifier modules,
 - Using latest LDMOS-FETs
 - ➢ Goal:
 - ◊ Acquire expertise in SSA design,
 - ◊ Contribute to the design improvement
 - ◊ Prepare the future operation follow up
 - Set reference for coming procurements
- Prepare next step:
 - Full scale prototype at 75...100 kW

4. Cavity Power Coupler

Brief history see [J. Jacob & E. Montesinos, 12th ESLS RF meeeting'2008]

- 1. 2008: after 17 years of quiet operation, suddenly
 - ◊ 5 leaks the booster cavity windows
 - ◊ 1 ceramic metallization on SR cavity 5
 - Fortunately: 6 pre-conditioned couplers in house but critical situation !
- 2. With support from CERN
 - Application of improved RF conditioning algorithm developed for LHC
 - O times thicker anti-multipactor Ti-coating on 12 spare windows
- 3. Repair damaged couplers
 - ◊ 4 times: welding a new window (new coating)
 - ◊ 2 times: brazing a new window (also new coating)
- 4. Improve Vacuum on the booster cavities
 - Add NEG inserts on the ion pumps
 - Bake out applied for the first time during summer (so far only done on SR)
- 5. Since 2008:
 - ◊ 24 new LEP type windows from PMB
 - Order of 2 x 10 new LEP type couplers from FMB and RIAL, respectively

We learnt so far:

- Ceramic chemistry had to be re-established, know how gets lost with time
 - finally bare ceramics from Wesgo
- Brazing of kovar rings on windows:
 - brazing material preventing correct welding
 - 1st series: repair by hand milling
 - ◊ Then: brazing specification refined
- Problem of cleanliness during manufacturing
- Apply correct pressure during assembly weld
- We are now testing:
 - Removal of Copper oxide from a "dirty couplers" that was arcing by sulfamic acid: it conditioned well
 - Waiting for one coupler with electro-polished inner conductor: to be tested soon
- Conditioning further improved:

CERN Conditioning set up [Eric Montesinos] now rebuilt at ESRF using today's technology

14th ESLS RF, ELETTRA, 29-30 Sept. 2010

New conditioning set up (new ESRF hardware implementation of LHC system)

 design available to other labs, if interested.

LabView control

Cavity_Conditionning_test	.vi		
Elle Edit View Project Oper	ate <u>T</u> ools <u>₩</u> indov	, Rep	
R5232			
COM1 I			
Level min (dBm) Vac Re	estart Fla	t Top Time (s)	
-30 1E-8 Power Min (Kw) Vac Le	s Inc	_Ramp_Up (dB) Inc_Vac_Up (dB)	
30 4E-8 Power Max (Kw) Vac Le	0.		
50 1.5E-1			
Soft Intik Hard Intik	Laural	Power Reg Duke width Rst Graph Refresh Moni Data Stati	
	Level -19.45 dBm	Power Reg Pulse width VSC Graph Refresh Moni Data Statu 48.32 Kw 2560 us 0 ms 0	as Attenuator
	1E-7 -		Attenuator
RF auto	-		50-
Width_limited			30
	Vacuum	<u></u>	20 -
CW_Mode	× .		0
			Max Vacuum
Width limited 🥥	1E-8 -	50 100 150 200 250 300 350 400 450 500 550 600 650	1E-6
		Time	1E-7 1
CW mode 🕥	55-		1E-9 -
	50 - 45 -		1E-10 -
Ramping Up 🌑	40-	ráp. Tá trá tit vály vály tát hátút, vály ta vály	16-11
	9 35 - 30 - 25 -	n an an a an an an an an a an a an a	Max Power
Flat Top 🥥	₹ 25 - 20 -		250-
Ramping Down 🅥	15 - 10 -		200 -
	5-	so 100 150 200 250 300 350 400 450 500 550 600 650	100-
	0	30 100 150 200 250 300 350 400 450 500 550 600 650 Time	0-
My Computer 4			▶ <i>1</i> 11

European Synchrotron Radiation Facility

New coupler using LHC window - CERN-ESRF-SOLEIL collaboration see also [J. Jacob & E. Montesinos, 12th ESLS RF meeeting'2008]

Reminder: LHC window directitly brazed into copper collars:

- No sharp edges
- Well defined current paths
- Sustains very high power: tested at 575 kW full reflection without damage

. Develop couplers for ESRF and SOLEIL using LHC window to

- Increase the power capability and improve the reliability
- Obtain a new standard and high performance plattform for high power couplers
- Electrical & mechanical compatibility with existing LEP coupler for both NC and SC applications
- ♦ ESRF: 1 prototype for high power tests + 2 production prototypes
- ◊ SOLEIL: 2 production prototypes
- Including waveguide transformers

2. CERN's interest

- Re-develop the brazing and subsequent electron beam welding in the CERN workshops
- ♦ Safeguard specialized know-how and guarantee durability of this strategic component

3. Status

- Successful ceramic / copper brazing at CERN (inspection of a cut sample)
- Or Prototype expected in December 2010
- OPPOSITE OF CONTROL OF CONTROL

European Synchrotron Radiation Facility

De Don

Didier Boilot

European Synchrotron Radiation Facility

Mathieu

Cerato

14th ESLS RF, ELETTRA, 29-30 Sept. 2010

J. Jacob: ESRF RF Status - Operation & Upgrade