

14th European Synchrotron Light Source Radio-Frequency Meeting September 29-30 Trieste – Italy.

STATUS OF THE SOLEIL RF. SYSTEM M.ELAJJOURI

- SOLEIL Operation September 2009-September 2010
- Booster RF operation
- Storage ring RF operation
- New frequency Tuner
- RF AMPLIFIER operation and R & D
- Summary and conclusion

SOLEIL Operation Sept.2009/ Sept.2010

300 mA Top-up until November 2009

400 mA Top up standard operation for users since November 2009 Other available users modes :

400 mA Hybrid Top-Up

80 mA 8 Bunches Top-Up

10 mA Single Bunch Top-Up

500 mA Top-Up validated beginning of 2010, used for machine R&D and Radioprotection test (for users beginning of 2011)

Booster RF

35 kW solid state amplifier & LLRF

5-cell LEP type cavity

From Sept. 09 until Sept. 2010 ~ 5000 running hours •Short Top-up interruption but no beam loss_____ caused by RF booster interlock card fault •Amplifier : no failure at all

> 20000 hours operation over 5 years, no real problem

Storage ring RF

- > 580 kW (500 mA) & 4 MV @ 352 MHz
- 2 cryomodules, each containing a pair of single-cell s.c. cavities
- Each cavity powered by a 180 kW solid state amplifier
- Both CM supplied with LHe (4.5 K) from a single cryo-plant

Storage ring operation

Beam availability during the users and RP sessions

Beam time availability of ~ 96% , 98% before may 2010 Two main RF erroganic failures impacted beam in 2010

Two main RF cryogenic failures impacted beam in 2010

• Breakdown of compressor PLC CPU board ~60 hours of beam downtime failure during week end + day off, spare board not compatible and spare station under installation.

Electrical power interruption during the spare compressor test (lost helium) ~ 6 hours of beam downtime

RF Cryogenic System

Install of spare compressor station with separate utilities.

- Redundancy in operation (losses of utilities (electric, water) → few hours restart)
- Maintenance transparency

Operational since June 2010

1) Standard screw-nut assembly replaced by *planetary roller screw*

2) Stepper motor + harmonic drive gear box

Stepper motor with planetary gear box

- → Less friction
 → More robust
- → Longer lifetime
- Prototype was successfully tested on a test bench @ cold in CryHolab at CEA →20 years of SOLEIL operation

Installation of New Tuner

Installation of the new cold tuning system for cavity 3&4 during summer shut down (August 2009)

Installation of the new cold tuning system for cavity 1&2 during winter shut down (January 2010)

In may 2010, the tuner of cavity 4 showed signs of malfunctioning

Before full sticking, use of the backup mode at fixed tuning and variable voltage until next shut down

Open Cryomodule 2 and investigation during the summer shut down 2010

The friction between the nut and satellites screw caused the blocking of the system

Tuner Screw Damages

Visible impact

Mechanical stop which prevents the cavity from plastic deformation

\rightarrow Double mistake

- During the preliminary test at warm, without operational soft interlock system, we probably hit the mechanical stop.
- Mechanical stop not correctly settled \rightarrow abnormal stress
- \rightarrow The inspection of the cav 3 system didn't show any sign of problem and the other tuners on CM1 are still working well

About 80% of them can be repaired (preventive repair maintenance on T2 and T3 during the shut down of the last summer)

None of these failures has impacted the operation (modularity & redundancy).

- Development a new module with 6^{th} generation LDMOS (50V), much more robust + thermal stress strongly reduced \rightarrow longer MTBF.
- Working point has been optimised for 46V @ 330W (G=21, η =72%)

P (W)	Gain (dB)	ldc1 (A)	ldc2 (A)	ldc (A)	Phase ()	S11 (dB)	Po (W)	E (%)
330	20,82	4,8	5,10	9,92	-127,0	-50,0	456,3	72,3
315	21,20	4,70	4,90	9,60	-126,7	-51,0	441,6	71,3
300	21,48	4,58	4,72	9,30	-126,3	-51,7	427,8	70,1
250	21,95	4,18	4,21	8,39	-126,0	-43,7	385,9	64,8
200	22,10	3,75	3,74	7,49	-126,7	-39,0	344,5	58,0
150	22,14	3,25	3,2	6,47	-128,0	-36,0	297,6	50,4

- Replace progressively the actual modules with LR301 by new ones with BLF574 transistor (typically 1 tower/year)
- The choice of this solution will minimize the modifications
- Option for higher power (380W) @ 50V

New generation modules developed at SOLEIL for different projects and collaborations.

Frequency	Output Power	Gain (1 dB)	Efficiency	projects
MHz	W	dB	%	
476	400	20	69	LNLS
352	700	20.5	73	ESRF
500	700	18	67	SESAME
88	1000	26	87	

Possibility of designing modules of intermediate frequency such 100 MHz (Astrid) 200 MHz (CERN) and up to L band (1.3-1.5 GHz)

ESRF Project

700 W module

DC/DC 50V/1200W

Transfer of technology agreement concluded with ELTA-AREVA

- → ESRF contract for 7 amplifiers of 150 kW (14 towers of 75 kW)
 - Module validated \rightarrow P = 700 W, G > 20 dB, η > 70% @ 350 MHz
 - Integration test and validation for one unity of 10kW combination of 16 modules"
 - 75 kW tower \rightarrow next year

LNLS Collaboration

2 amplifiers of 50 kW with RF modules of 400 W @ 476MHz were successfully tested.

AVRIL 2010, "SOLEIL – LNLS team in Campinas BRAZIL"

Area test with high power voltage, water and spare BOOSTER Cavity

- \rightarrow LLRF and amplifier test
- → Conditioning the spare BOOSTER cavity (ready to be installed, if necessary)

New digital LLRF BOOSTER (R. Sreedharan presentation)

- > For the BO RF, no operation problem at all
- > For SR RF , after 4 years of running, the operational experience proved to be fully satisfactory, but in 2010 significant downtime due to 2 long cryogenics failures
- >Installation of a spare He compressor station
- >Confirm the good reliability of the new CM frequency tuners
- >Upgrade of the power couplers (collab. with CERN & ESRF), able to store 500mA with one Cryomodule (→ redundancy)
- >Progressive replace of the actual modules by the new generation (1 tour/year)
 - → increase MTBF
- Continue the development of LLRF for Booster and Storage ring and others projects.