Final Impedance Budget of the ALBA Storage Ring

T.F. Günzel
ESLS, Trieste 2010
25th-26th November
Outline:

Longitudinal $\frac{Z}{n}$ budget

Longitudinal resonances

Global approach of transverse impedance
• Resistive wall impedance (RW)
 • Effect of multi-layer chambers
 • Budget and thresholds
• Geometrical (broadband) impedance
• TMC-instability
• Head-Tail instability

Conclusions
Longitudinal $\frac{Z}{n}$ budget

The main risk is that the onset of the microwave instability enhances the energy spread.

Potential well distortion below the onset of the microwave instability normally is not a problem since longer bunches and created synchrotron spread can even stabilize (other instabilities) the beam.

For bunched beam the Boussard-criterion has to be used which has according to A.Chao’s book the following form:

$$\left| \frac{Z}{n} \right| \leq \sqrt{\frac{\pi}{2}} \frac{Z_0}{Nr_e} \gamma \alpha \sigma_z \sigma_E^2 = 873 \text{ mΩ}$$

for homogeneous filling at 400mA (=0.89mA/bunch)
Longitudinal \(\frac{Z}{n} \) budget con’t

universal and strict application of the same criterion:

\[
| \sum \frac{Z}{n} | \leq \sum | \frac{Z}{n} | \\
| \sum \frac{Z}{n} |_{\text{eff}} \leq \sum | \frac{Z}{n}_{\text{eff}} | \leq 873 \text{m\ensuremath{\Omega}}
\]

the contributions:

• vacuum chamber elements
determination of sets of \((f_r, R_s, Q_r)\) by a fit of several resonators to the impedance spectrum. Computation of \(|Z/n|_{\text{eff}}\)

• RF-cavity
fit of a \(Z/n^{3/2}\) function to the spectrum

• long. reduced RW-impedance
Analytical computation of \(|Z/n|_{\text{eff}}\) from the geometrical parameters of the different low-gap and standard chambers.
Installation of NEG/Al-chambers respectively in-vacuum undulators does not increase the RW-part of $|Z/n|$. Better conductivity cancels out more narrow chamber. The BBR-part of $|Z/n|$ only increases moderately with more low-gap chambers. The cavities provide the largest contribution but also the most uncertain one. The integral over $|Z/n|$ has to be cut off somewhere before the its lower border reaches 0. Worst case was assumed.

The threshold of the Boussard-criterion is slightly exceeded partly due to its more strict interpretation. Tracking simulations have shown that in general the onset of the MW-instability is typically much higher than the one given by Boussard.
Resonance behaviour
study of longitudinal beam stability

About 2/3 of all elements have been examined on possible
generation of dangerous HOMs.

Example: vertical scraper (nominal 9.5 x 80mm²)
Resonance behaviour

Overlay of long. Impedance (t-domain) and eigenmodes (f-domain)

Q~500

gap=9.5mm

no HOM

nominal pos.

Q=715

no HOM

gap=7mm

Q=529

no HOM

gap=11.5mm

Q=1178

HOM!

gap=17mm

Q=2552

HOM!

gap=23mm

the scraper in withdrawn state can generate a HOM, in normal position no.

Thomas Guenzel, ALBA
Effects of multi-layer chambers on the transverse impedance

NEG-coated Al-chambers

Study of the effect of NEG-layers on the RW-instability

NEG only increases impedance at relative high frequency only relevant for single bunch effects like TMCI, HT etc.

Furthermore, low conducting NEG only has effect on high frequencies no effect at the excitation freq. of RW

Possible effects of surface roughness have not been studied yet, but will be done if necessary.

according to Burov, Lebedev EPAC’02, Paris, p.1452

Thomas Guenzel, ALBA
Effects of multi-layer chambers on the transverse impedance

Metal sheets covering the jaws of the in-vacuum undulator

Model of its transverse impedance given by Cu/Ni-layer in air
the impedance’ real part of a single layer on a magnet and in air have very similar values

according to Burov, Lebedev EPAC’02, Paris, p.1452

Originally 50µ sheets were foreseen, finally they will be 100µ thick for the benefit of the beam stability.

Thomas Guenzel, ALBA
Effects of multi-layer chambers on the transverse impedance

ceramic kicker chamber with
400nm Titanium cover

according to Danilov, Henderson, Burov, Lebedev EPAC’02, p.1464
other descriptions, for instance the one of Piwinski
(PAC’77, p.1364) predict lower values at the RW-frequencies

To the contrary of the other multi-layer chambers, the kickers have enhanced impedance’ real part at the RW-excitation freq.
Resistive wall transverse impedance budget

thresholds and growth rates of mode m=0 at zero chromaticity

<table>
<thead>
<tr>
<th>constellation</th>
<th>$A_y [k\Omega \sqrt{GHz}]$</th>
<th>$I_{th} [mA]$</th>
<th>$\tau^\perp [s^{-1}]$</th>
<th>$A_H [k\Omega \sqrt{GHz}]$</th>
<th>$I_{th} [mA]$</th>
<th>$\tau^\perp [s^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>virgin machine (VM)</td>
<td>1723.1</td>
<td>38.8</td>
<td>1942.69</td>
<td>626.6</td>
<td>161.4</td>
<td>604.58</td>
</tr>
<tr>
<td>VM+wiggler chamber</td>
<td>1734.7</td>
<td>38.6</td>
<td>1955.77</td>
<td>634.3</td>
<td>159.4</td>
<td>612.01</td>
</tr>
<tr>
<td>VM+wiggler+3 NEG/Al</td>
<td>1802.3</td>
<td>37.1</td>
<td>2031.99</td>
<td>677.1</td>
<td>149.3</td>
<td>653.30</td>
</tr>
<tr>
<td>VM+wigg+3 invacs</td>
<td>1815.6</td>
<td>36.9</td>
<td>2046.98</td>
<td>688.4</td>
<td>146.9</td>
<td>664.21</td>
</tr>
<tr>
<td>VM+wigg+3 invacs+3NEG/Al</td>
<td>1883.2</td>
<td>35.5</td>
<td>2123.20</td>
<td>731.2</td>
<td>138.3</td>
<td>705.50</td>
</tr>
</tbody>
</table>

$\beta Z_{\perp} = \frac{A_{\perp}}{\sqrt{\omega_0(1-Q_{\perp})}}$

The increase of RW-impedance is only moderate upon installation of low-gap chambers, the standard beam chamber 14x72mm2 of SS makes up the largest part
Resistive wall instability

the thresholds as a function of the normalized chromaticity
calculated with a modified version of ZAP
phase I constellation

In the vertical plane the threshold is ~35.5mA
in the horizontal one ~138.3mA.

transverse feedback system will be installed to cure it.

Thomas Guenzel, ALBA
spectra of the broadband impedance phase I

computed with GdfidL(W.Bruns)
TMCI thresholds

Single bunch threshold of TMCI is computed by combining RW-impedance and geometrical impedance. Modified MOSES versions (H.Y. Chin, CERN-TH, 1988) were used for this computation where different RW-models (as shown above) were implemented.

<table>
<thead>
<tr>
<th>constellation</th>
<th>I_{thres} [mA]</th>
<th>I_{geo} [mA]</th>
<th>I_{RW} [mA]</th>
<th>$I_{\text{RW}} / \tau_{\text{RW}}$</th>
<th>I_{thres} [mA]</th>
<th>I_{geo} [mA]</th>
<th>I_{RW} [mA]</th>
<th>$I_{\text{RW}} / \tau_{\text{RW}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>virgin machine (VM)</td>
<td>21.5</td>
<td>73.3</td>
<td>30.42</td>
<td>59.10</td>
<td>48.0</td>
<td>154.2</td>
<td>69.74</td>
<td>365.51</td>
</tr>
<tr>
<td>VM + wiggler chamber</td>
<td>21.1</td>
<td>69.6</td>
<td>30.18</td>
<td>59.03</td>
<td>46.8</td>
<td>149.6</td>
<td>68.11</td>
<td>374.55</td>
</tr>
<tr>
<td>VM + wiggler + 3NEG/AI</td>
<td>19.1</td>
<td>61.8</td>
<td>27.64</td>
<td>56.16</td>
<td>42.8</td>
<td>139.1</td>
<td>61.82</td>
<td>426.81</td>
</tr>
<tr>
<td>VM + wiggler + 3invacs</td>
<td>18.7</td>
<td>51.5</td>
<td>29.36</td>
<td>60.10</td>
<td>42.4</td>
<td>122.4</td>
<td>64.67</td>
<td>441.17</td>
</tr>
<tr>
<td>VM + wiggler + 3invacs + 3NEG/AI</td>
<td>17.0</td>
<td>47.1</td>
<td>26.6</td>
<td>56.48</td>
<td>40.1</td>
<td>115.3</td>
<td>61.48</td>
<td>497.73</td>
</tr>
</tbody>
</table>

To see the effect of multi-layer vacuum chambers, measure the ratio of the imaginary to the real part of the RW-contribution to total impedance imaginary part represented by $I_{\text{RW}}^{\text{TMCI}}$, real part by growth rate τ of the resistive wall instability

$$
\frac{1}{I_{\text{TMCI}}} \approx \frac{1}{I_{\text{geo}}} \left(\frac{\text{Im}(\beta \bot Z_{\bot})_{\text{geo}}}{4\sqrt{\pi} (\omega_s \sigma_{\tau})(E / e)} \right) + \left(\frac{1}{I_{\text{RW}}} \frac{\text{Im}(\beta \bot Z_{\bot})_{\text{RW}}}{4\sqrt{\pi} (\omega_s \sigma_{\tau})(E / e)} \right)
$$

Thomas Guenzel, ALBA
Head-Tail instability

In the vertical plane the threshold is $\sim 3.6\,\text{mA}$, in the horizontal one $\sim 15\,\text{mA}$, smaller than the TMCI-thresholds, with Landau damping they might increase.

transverse impedance budget of phase I (BBR+RW):

no problem at 400mA homogeneous filling

In the vertical plane the threshold is $\sim 3.6\,\text{mA}$, in the horizontal one $\sim 15\,\text{mA}$. smaller than the TMCI-thresholds, with Landau damping they might increase.

Thomas Guenzel, ALBA
Conclusions

• The impedance values are much more exact as they were 3 years ago.

• However, the Z/n-values, in particular of the cavity have still to be improved.

• Search for dangerous long. HOMs in the vacuum system revealed 1 HOM in the outlets of the injection kickers, it’s cured by installation of RF-fingers.

• Interesting proposal for the detection of the enhancement of RW-impedance of chamber walls with several layers.

• Some optimisations in the computations of the thresholds can still be done, apart from that we are ready to test the impedance model with beam.