Optics for I13 Beamline and Its Recent Status

ESLS_XVIII Workshop, 24-26 November, 2010, ELETTRA, Trieste

B. Singh DIAMOND Light Source Ltd

B. Singh

Summary

Introduction

- Features of I13 beamline
- Virtual h-focussing
- Advantages to I13 beamline

Optics for I13 beamline

- Solution to optics
- Effects of optics on ring dynamics

Instability, dynamic aperture, injection efficiency, Touschek lifetime and orbit errors

Recent status

- Implementation
- Commissioning, user run and first light in coherence branch of beamline.
- Conclusions and future outlook.

B. Singh

Introduction(1)

B. Singh

- Two independent branches for Coherence and Imaging applications.
- Coherence : 6-20 KeV, Imaging : 8-30 KeV
- Fixed Two in-vac. Undulators : two mini $-\beta_v$ (SLS)
- ≻ Coherence: virtual h-focussing → large β_x and $\alpha_x \sim 1$ (APS, ESRF)
- ➢ Coherence: high brilliance → large number of periods (N) or longer length (L) of undulator
- Imaging: in-vac. undulator with gap of 5mm
- Location: long insertion straight

B. Singh

Virtual h-focussing (4)

Comparison of virtual β_x for 'two mini- β_v +hfo' and 'two mini- β_v ' optics

B. Singh

Optics for I13 Beamline and Its Recent Status ESLS_XVIII, 24-26, November, 2010, Elettra, Trieste diamond

Advantages to I13 Beamline (5)

Figure: A comparison of a 3m long U20 cryo-cooled undulator (blue) in a mini-beta section and a comparable undulator in a long straight (U28).

Thanks to C. Rau, I13 beamline

Solution to I13 Optics(1)

- MAD Optics Code
- \Box π-trick with small deviation ($\Delta Q_x = 0.06$, $\Delta Q_y = 0.5$)

---- to preserve symmetry of ring sextupoles for $\Delta p/p=0$

- \Box $\alpha_x \le 1.3$ at middle of 1st mini β_Y to contain the size of mirror
- Doublet at the middle ----- to maximize drift spaces
- Existing quad Q1D is retained and one more focussing quad is added on either side
- Designs of extra quads are chosen from existing quads of ring.

---- to avoid design efforts.

B. Singh

Solution to I13 Optics(2)

Figure: β-functions of final optics for I13 beamline

B. Singh

- New WP $(Q_x, Q_y) = (27.22, 12.86)$
- Emittance = unchanged
- Upstream undulator (Imaging): L=2m, Gap=5mm
- Downstream Undulator (coherence): L=2.8m, gap=6mm

Optics for I13 Beamline and Its Recent Status ESLS_XVIII, 24-26, November, 2010, Elettra, Trieste **diamond**

B. Singh

Effects of I13 Optics on Ring Dynamics (1)

- ✤ Instabilities (Resistive Wall): Q_v above half integer
- DA and FMA
- Injection Efficiency
- Touschek Lifetime
- Orbit Errors

Instabilities: Q_v above half integer ---- Resistive Wall

---- TMBF will be used (No 3rd harmonic cavity in Diamond)

B. Singh

Effects of I13 Optics: Dynamic Aperture (Δp/p=0) (2)

Effects of I13 Optics: Injection Efficiency (3)

Injection efficiency: TRACY II

All kick maps + all multipolar errors+ engineering apertures

Injection efficiency						
case	new sextupoles	Old sextupoles	normal lattice			
	ξ _{x/y} =1.5/.7	$\xi_{x/y} = 0/0$				
no tunes corr.	76%	85%	83%			
			$(\xi_{x,y}=.0,0)$			
tunes corr.	97%	91%				
			(ξ _{x,y} =1.5,.7)			

B. Singh

Effects of I13 Optics: Touschek Lifetime (4)

B. Singh

Optics for I13 Beamline and Its Recent Status

ESLS_XVIII, 24-26, November, 2010, Elettra, Trieste diamond

Effects of I13 Optics : Orbit Errors (5)

- Needed two extra h/v correctors.
- Located before and after doublet.

Figure: comparison of rms orbit errors : a) no extra correctors, b) one extra h/v corrector, c) two extra h/v correctors.

B. Singh

Recent Status: Implementation(1)

- Redesign of girders G1,G3 and one extra middle girder for doublet as well as redesign vacuum vessel.
- Four extra Quadrupoles
- Modification of existing Q1D quad power supply to reach .k=0.7m⁻² to 2.2 m⁻² and its cooling.

Middle girder with doublet under assembly

Girder G1 assembled

B. Singh

Recent Status: Commissioning (2)

- Optics established with WP = (27.22, 12.86).
- Injection efficiency > 75% (IDs open).
- o Instability: strong

with in-vac IDs open

 180mA,	2/3 fill	$\xi_{x/v} = 1.7/1.9$	(normal operational values)	
000 A				

- ---- 200mA, 2/3 fill ---- $\xi_{x/y}$ =1.7/2.1+TMBF
- ---- 200mA, full fill ---- $\xi_{x/y} = 1.7/3.5$
- ---- 200mA, full fill ---- $\xi_{x/y}$ =1.7/2.8+TMBF

---- 200mA all in-vac IDs closed 7mm for $\xi_{x/y} = 1.7/4.0$ for both fills It has not been possible to close all in-vac ID to 5mm at 200mA with either fill pattern even with help of TMBF.

----- Efforts to suppress instabilities using TMBF are underway

B. Singh

Recent Status: Commissioning (3)

B. Singh

Moved the Q_v=12.86 to 13.09 to overcome instability

New WP =(27.237,13.095)

 Ring optics re-optimized to keep β_y(1.6m) unchanged in all standard straights and twiss parameters of I13 straights using ELEGANT.

- Emittance = 2.6nm.rad
- Injection Efficiency (all IDs close/open) >75%
- ξ_{x/y} =2.1/1.7
- Lifetime >18h

Recent Status: Commissioning (5)

Figure: relative beta-beat with new 113 optics (27.237,13.095) w.r.t designed I13 optics (27.22,12.86) from model

Relative beta-beat with new I13 optics w.r.t designed I13 optics calculated from models ----- 6% in x, y

Figure: Injection efficiency vs. Q_{x/v}

B. Singh

Recent Status: User run with I13 Optics (4)

Successful user run with I13 optics and top-up before Nov. shut down

B. Singh

ESLS_XVIII, 24-26, November, 2010, Elettra, Trieste diamond

Recent Status: User run with I13 Optics (5)

Figure: Top-up Viewer of last shift with I13 optics before shut down

B. Singh

Recent Status: First Light in Coherence Branch of I13 Beamline

Expected on 24-11-2010

Undulator installed in ring for coherence branch of I13 beamline

Assembled I13 straight with downstream undulator (coherence)

B. Singh

- Strong RW instability for operation above half integer (Q_v =12.86).
- Alternate optics devised to operate below half integer (Q_v =13.09).
- Successful user operation with alternate optics.

B. Singh

- Another long straight is under modification with similar optics for 109 beamline and new WP =(27.22, 13.36) allowing machine operation below half integer.
- Future operation will be at WP =(27.22, 13.36) when I09 quadrupoles (march,2011) will be installed.

Thanks

AP group:

R. Bartolini, R. Fielder, I.M. Martin

Diagnostics / Controls groups:

G. Rehm, A. Morgan, J. Rowland

Engineering group

N. Hammond, R. Holdsworth

Operations group

113 beamline

C. Rau, U. Wagner

B. Singh