STUDIES OF ELECTROCHEMICAL SYSTEMS WITH RUNNING FARADAIC REACTIONS BY IN SITU SPEM

<u>B. Bozzini¹</u>, C. Mele¹, E. Tondo¹, M. Amati², L. Gregoratti², M. Kazemian Abyaneh², M. Kiskinova²

¹I.N.F.M. Unità di Lecce, Università di Lecce, via per Monteroni, I-73100 Lecce, Italy ²Sincrotrone Trieste SCpA, SS14-km163.5 in Area Science Park, 34149 Trieste, Italy

Advanced studies in anodic and cathodic electrochemistry require dynamic position-dependent compositional, morphological and structural information at the submicrometric and mesoscopic scales $(0.1\div25 \ \mu\text{m})$, regarding the reactive interface involved in faradaic processes. The zone-plate based scanning photoemission microscopy, allowing different detection modes and variable fields of view, currently gives the possibility of: (i) applying external potentials, (ii) probing samples with rough surfaces and (iii) dosing gases in the analysis chamber: electrochemical science and technology can greatly profit of these capabilities,.

This presentation will address three key issues in the field of in situ electrochemical SPEM: (1) briefly review the state of the art regarding in situ electrochemical SPEM and XPS experiments carried out with both synchrotron and conventional sources; (2) report original SPEM results obtained by the authors at the ESCAmicroscopy beamline at Elettra and (3) discuss the perspectives of SPEM-based approaches for the in situ investigation of cutting-edge electrochemical materials science problems.

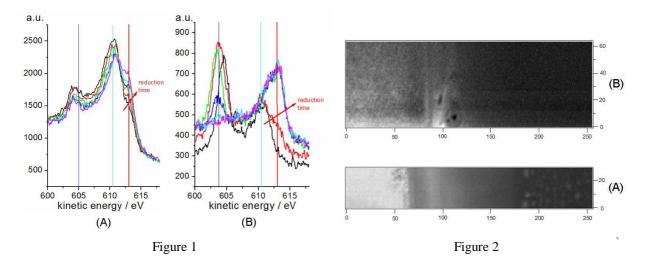


Figure 1: Dynamic Ni 3p XPS spectra during reduction at (A) -625 mV_{cell} and (B) -3000 mV_{cell}. Red mark: elemental Ni, light blue mark: Ni(II), blue mark Ni satellite peak.

Figure 2: SPEM images of (A) cathode (Ni electrode on the left, $30 \times 256 \times 2 \mu m$) and (B) anode (Ni electrode on the right $64 \times 256 \times 2 \mu m$), at the Ni 3p energy (611 eV), under electrochemical polarisation (-625 mV_{cell}).