Electron spectroscopy – a probe for fundamental properties of isolated species

Catalin Miron Synchrotron SOLEIL, l'Orme des Merisiers, France

Since many years, electron spectroscopy is an excellent analytical tool to characterize material's chemical composition or degree of oxidation [1]. When performed at ultrahigh resolution inner-shell spectroscopies provide an accurate probe of ultrafast (fs) decay dynamics, in particular for isolated species [2]. Completely new scientific opportunities are being offered by the bright and highly monochromatic x-ray beams coupled to state-of-the-art instrumentation available at the newest facilities, such as the <u>PLEIADES</u> [3] beamline at SOLEIL (France), operated as a user facility since March 2010.

Selected examples will be shown from a panel where high-resolution spectroscopies have been employed to investigate fundamental properties of matter, such as the Vibrational Scattering Anisotropy (VSA) [4], the Auger-Doppler effect using circularly polarized light [5], or the rotational Doppler broadening of molecular electron spectra [6].

[1] K. Siegbahn et al., ESCA. Atomic, Molecular and Solid State Studied by Means of Electron Spectroscopy, Almqvist and Wiksells, Uppsala (1967).

[2] C. Miron and P. Morin, "High-Resolution Inner-Shell Photoionization, Photoelectron and Coincidence Spectroscopy", in *Handbook of High-Resolution Spectroscopy*, Vol 3, Edited by M. Quack and F. Merkt, ISBN: 978-0-470-06653-9, John Wiley & Sons, Ltd, Chichester, UK, p. 1655-1689 (2011).

[3] C. Miron et al., http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/PLEIADES

[4] C. Miron et al., Phys. Rev. Lett. 105, 093002 (2010).

[5] O. Travnikova et al., Phys. Rev. Lett. 105, 233001 (2010).

[6] T.D. Thomas et al., Phys. Rev. Lett. 106, 193009 (2011).