A 2D slope measuring system based on Stitching Shack Hartmann optical head

Guillaume Dovillaire Samuel Bucourt – Xavier Levecq Imagine Optic France

Mourad Idir Shinan Qian - Konstantine Kaznatcheev midir@bnl.gov BNL/NSLS II

Collaboration

-Imagine Optic

NSLS II

MEADOW 2013 / Trieste

Outline

- Optical Head Description
- First results
- Possible improvements
- Summary

Metrology requirements

Effect of the surface quality differs on each spatial frequency regime

Deflectometry based Optical Metrology Station NOM type System

Big 2D gantry 2D Travel range : 1500 mm

ELCOMAT 3000

Shinan Qian

Flat Silicon mirror

Size: 150 mm x 30 mm x 23 mm Shape: flat Material: silicon

See Shinan's QIAN poster

NSLS II NOM

Shinan Qian

NSLS II NOM – APS NOM

Shinan Qian Lahsen Assoufid – J Qian (APS)

Comparisons of #1 mirror 150mm with NSLSII-NOM1 and APS-NOM tested on 4/19/13 and 1/29/13, error 77nrad rms

Height error difference is 0.3 nm rms

A 2D slope measuring system based on Shack Hartmann optical head

NOM type machine : Design

Parameter	Specification
Platform dimensions [mm]	2600(w)x 1100(d)x1700(h)
Platform weight [kg]	5500
Electrical supply voltage and load	230Vac 5A rms
Electrical supply type	50/60 Hz single phase
Air supply pressure	6 – 7 bar
Air consumption	30 l/min
Air dew point	-20 degC at 1 bar

Travel has been maximized at 1500 mm

Optical Platform ~ 200 kg

Stitching Shack Hartmann head for Long Trace Profiler : SSH-LTP

Imagine Optic-

From Muriel Thomasset / SOLEIL

Imagine Optic/France

Stitching Shack-Hartmann Wavefront system Concept

<u>Problem</u> : Measured 1.5 meter long mirror with 50nrad rms accuracy, highest possible spatial resolution with mirror radius as low as possible.

Solution :

- 1. very sensitive wavefront sensor +
- 2. source +
- 3. translation stage +
- 4. stitching algorithm

Shack-Hartmann Wavefront sensor	
Number of points	15 x 11
Pupil size	18 x 13 mm

Shack-Hartmann Wavefront sensor

Concept

Stitching Shack Hartmann Optical Head : SSHOH

System installed at BNL

System as designed

Henry Over **Philipp Wallington**

The wavefront sensor

Shack-Hartmann Wavefront sensor	
Number of points	15 x 11
Microlenses size	1.2 x 1.2 mm ²
Sensitivity	Down to 40 nrad rms

HASO UHP sensitivity (10x100ms) 140 120 Slope error (nrad) 100 80 60 40 20 0 52:05 52:48 53:31 54:14 54:58 55:41 56:24 57:07 57:50 minutes : seconds

The impact of air turbulences is very important. Averaging 10 images allows to reach 40nrad rms...

The source and pupil imaging

The mechanical design

Measurement principle

Stitching principle and SSH-OH parameters

The Stiching algorithm

Needed to remove the translation stages errors and build the entire surface map

Translation errors are then subtracted to the raw data and data are finally averaged

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Some results

Flat Silicon mirror

A

Flat Silicon mirror

В

В

A

A

Results on a flat mirror

Average of 26 scans on a **flat mirror** (100mm long)

Slopes X rms = 0.69µrad

26 slopes profiles

30 nrad rms of repeatability obtained after subtracting best sphere

NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Results on a spherical mirror (RR02)

Average of 7 scans on a spherical mirror (80mm long, radius 55m)

90 nrad rms of repeatability obtained after subtracting best sphere

NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Preliminary results on a 1D elliptical mirror

Systematic errors estimation : same ellipse measured with angles from 0 to 1 mrad

Delta slopes = 20 nrad rms

Preliminary results on a 1D elliptical mirror

M2A CSX

M2A CSX

		Best radius removed	
Rx	Ry	X slope urad	Y slopes
(km)	(km)	rms	urad rms
-267.16	21.341	0.16	0.2

2D Map of Residual slope error of the mirror

M2A CSX

1D Line of Residual slope error of the mirror and Integrated PSD

Spherical mirror R~140 m CSX

К

NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Lab E5 Mirror preparation

Lab E3 inside the enclosure

2D Map of Residual slope error of the mirror (measuring time for 1 scan Forward / Backward ~ less than 3 hours)

Slope errors (µrad)

1D residual slope

CSX-M3A : -14000 steps, Rx=29.45km

CSX-M3A : -14000 steps, Rx=29.45km

Bendable mirror after shiming

Possible improvements

Depend on Shutdown and Budget

Combine several instruments in the same platform

Hollow penta-prism 20 x 20 mm

Optical Head ~ 25 kg

HFM

Try to get access to higher spatial resolution

Effect of the surface quality differs on each spatial frequency regime

Add another optical head for higher resolution

.Specifications

System Type	Portable, high-resolution video microscope
Probe	Phase measuring interferometer
Objectives	10X Nikon Mirau standard; 20X Mirau, or 2.5X Michelson or 5X Michelson optional
Working Distance	2.5X: 10.3 mm; 5X: 9.3 mm; 10X: 7.4 mm; 20X: 4.7 mm
Vertical Range	±6 µm
RMS Repeatability	0.05 nm
RMS Precision	0.1 nm
Sample Reflectivity	4–98%

MFT probe.

Add another optical head still based on a SH wavefront sensor with higher spatial resolution

Main advantages

- Same measuring points for both instruments
- "Easy" integration in the existing hardware and software
- Try to reach smaller radius of curvature / toroidal mirrors

CONCLUSION

Shack-Hartmann Wavefront sensor	
Number of points	15 x 11
Pupil size	18 x 13 mm
Microlenses size Resolution	1.2x1.2 mm ²
Measurement range	From 5 mm to 1500 mm
Radius of curvature	From -1.2 m to 1.2 m
Sensitivity	Better than 50 nrad rms

Acknowledgements

<u>Optical Metrology Group</u> Shinan Qian - Konstantine Kaznatcheev <u>Optical Fabrication Group</u> Ray Conley + his Group Wayne Lewis - Oksana Ivashkevych - So Sung-Leung Daniel Bacescu (CSX Beamline) - Scott Coburn (IXS Beamline)

Josep Nicolas (ALBA) Frank Siewert (Bessy) Kawal Sawhney (DIAMOND) Lahsen Assoufid (APS)

— Imagine Optic —

Muriel Thomasset Pascal Mercere Francois Polack Samuel Bucourt - Xavier Levecq Jerome Legrand - Rakchanok RUNGSAWANG Mathias Bach Henry Over Philipp Wallington

Research supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886

THANK YOU FOR YOUR ATTENTION

