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Outline

* Coherent Synchrotron Radiation (CSR)
* Physical problem
 Computational challenges

New 2D Particle-In-Cell CSR Code
e QOutline of the new algorithm
 Parallel implementation on Graphical Processing Units (GPUs)
* Using wavelets to increase computational accuracy and efficiency
* Benchmarking against analytical results

e Still to Come

Summary
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CSR: Physical Problem

Beam’s self-interaction due to CSR can lead to a host of
adverse effects

o Energy spread

o Emittance degradation
o Longitudinal instability (micro-bunching)

Being able to quantitatively simulate CSR is the first step
toward mitigating its adverse effects

It is vitally important to have a trustworthy 2D CSR code

6 October 2014 HP CSR Simulations on GPUs



CSR: Computational Challenges

* Dynamics governed by the Lorenz force:

d(ms .
(ym.v)= p-"
dt e
LARGE CANCELLATION E=FE* 4+ E
E“,B“" : external EM fields B o B4 B

. Eself,gself . self-interaction (CSR)

NUMERICAL NOISE
DUE TO GRADIENTS

retarded
potentials

t.=t_|”—”| retarded
c time

ACCURATE 2D INTEGRATION B L .
Charge density:  pP(r,1)= ff(r,v,t) dv

Current density:  J(F,f)= fﬁf(?,ﬁ,t) dv

- ENORMOUS COMPUTATIONAL
Beam distribution function (DF):  f(r,V,t)

AND MEMORY LOAD
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CSR: Computational Challenges

o Our new code solves the main computational challenges
associated with the numerical simulation of CSR effects

« Enormous computational and memory load
(storing and integration over beam’s history)
Massive parallelization on GPUs

o Large cancellation in the Lorenz force
Developed high-accuracy, adaptive multidimensional integrators for GPUs

o Scaling of the beam self-interaction
Particle-in-Cell (PIC) code

* Self-interaction in PIC codes scales as grid resolution squared
(Point-to-point codes: scales as number of macroparticles squared)

o Numerical noise
Noise removal using wavelets
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New Code: The Big Picture

Store distribution
on NXxNygrid

\—?_//

N point-particles
at t=t,

Bin particles on

NON-STANDARD FOR PIC CODES

Integrate over grid histories to
compute retarded potentials

NXxNygrid

system at t=t +At

\ 4

and corresponding forces
on the NXxNy grid

Interpolate to obtain forces

Advance particles by At
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New Code: Computation of CSR Effects

i Map DepositParticles omputePotenti §ComputeForces§ InterpForces simO
Compute Compute Advance
1 Beam bunch Oux#:0uxde| | E,E,B || particles
‘ on the grid ——&  oneach —p| in time with
(8,,%,, s P2) GetE, E, B, | | | particle | | leap-frog
T | on grid (interp2D) | scheme
z | -
|
ST 1
8 3 :
Bl X.
Compute a | Compute
| i 3LAB 3 offset X . ¥ | | Vantage Compute 3, 40
§ 'FRAME oo | point: integration by 4 A
| i ([ X Y) : Beam bunch X raxy
T A N | C e X0, ¥) e .
‘ 7'y 'y
g3 x’
§ = v
i Beam bunch Integrate Take pa.lrtia.l
(%,.7,.p . p0||,] Vantage to get dergvatlves.
Bin particles | | point: 0, A, A 5 .79
p, J on grid | (t,, X, 7)) S rid xi iy
g ko S L on grid on grid

Computing retarded potentials:
Major computational bottleneck

3 coordinate frames N o2r L
. . i | ‘on the grid
for easier computation

(ingerp3D)
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New Code: Computing Retarded Potentials

e Carry out integration over history:

6 October 2014

[¢(:t)]_/ p(Mi=2c) | ar (=
« Determine limits of integration in lab frame:
0.4820 ,
circles of | '
: r—r’|
0.4815 /causallty at t'=t— .
0.4810 |
0.4805 |
> -HHHH(((( (f\\
0.4800 |- il \\\“H .
observation
0.4795 | I R R ox point (7, )
0.4790 rid
e « « integration range
0-47%%00 0.001 0.002 0.003 0.004 0.005
b% +9.885
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For each gridpoint,
independently,

do the same integration
over beam’s history

Obvious candidate for
parallel computation



Parallel Computation on GPUs

 Parallel computation on GPUs
* |deally suited for algorithms with high arithmetic operation/memory access ratio
» Same Instruction Multiple Data (SIMD)

Several types of memories with varying access times (global, shared, registers)

Uses extension to existing programming languages to handle new architecture

GPUs have many smaller cores (~400-500) designed for parallel execution

Avoid branching and communication between computational threads
GPU

11 ~

9

8] 0] 0] 0] B

More space for ALU,
less for cache CPU
and flow control GPU: Host

grid = blocks = threads

Example: Tesla M2090 GPU has 512 cores
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Parallel Computation on GPUs

o Computing the retarded potentials requires integrating over
the entire bunch history — very slow! Must parallelize.

o Integration over a grid is ideally suited for GPUs
o No need for communication between gridpoints
o Same kernel executed for all (interpolation)
o Canremove all branches from the algorithm

o We designed a new adaptive multidimensional integration
algorithm optimized for GPUs

[Arumugam, Godunov, Ranjan, Terzi¢ & Zubair 20133,b]

o NVIDIA’s CUDA framework (extension to C++)

o About 2 orders of magnitude speedup over a serial implementation
o Useful beyond this project
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Parallel Computation on GPUs

o The higher the resolution, the larger the fraction of time spent

on computing integrals
The code scales better on multiple GPUs

([ ]
« We expect the scaling at larger resolutions to be nearly linear
32 ; 3 ‘ ‘
N=1024000 | Grid Resolution 128 x 128 —@—
| Grid Resolution 64 x 64 —l}—
] 3 ; ; ;
2 8 16 32

Number of GPUs
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Parallel Computation on GPUs

o The largest resolution tested so far is 128x128
o 1 step of the simulation on a 128x128 grid and 32 GPUs: ~ 10 s
« Execution time reduces as the number of macropraticles grows

Number of Grid Sequential Single GPU 32 GPUs
Particles (IV') Resolution Time(sec.) Time (sec.) Speedup Time (sec.) Speedup
32 X 32 145.52 1.48 98 1.29 113
102400 64 x 64 1736.24 16.78 104 1.13 1537
128 x 128 27049.30 256.85 105 13.88 1950
32 X 32 121.41 1.30 93 1.23 99
1024000 64 x 64 1140.15 11.12 103 1.75 652
128 x 128 15153.60 144.03 105 11.78 1287
32 X 32 119.73 1.29 93 1.23 97
4096000 64 x 64 939.96 9.19 102 1.74 540
128 x 128 10654.00 101.37 105 9.33 1142
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Importance of Numerical Noise

» Signal-to-noise ratio in PIC simulations scales as N /2
[Terzi¢, Pogorelov & Bohn 2007, PR STAB 10, 034021]

* Then the numerical noise scales as Nlopc'l/2 (N,oc: avg. # of particles per cell)

1e+06

- CPU Execution Time —é—
128 x 128 grld Execution Time with Single GPU —i—
Execution Time with 32 GPUs —&—

1e+05 | ,
’§1e+0:\)‘\x\"\x
(2 . . °
‘g’ Execution time for integral
= 1e403 » | evaluation also scales as N, /2
N
=3
3 100\\'\.
L

10‘!\‘,\0—0\\_‘.

1

1 10 100 1000
Number of particles per grid

Less numerical noise = more accurate and faster simulations
[Terzi¢, Pogorelov & Bohn 2007, PR STAB 10, 034021; Terzi¢ & Bassi 2011, PR STAB 14, 070701]
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Wavelet Denoising and Compression

« When the signal is known, one can N, 7 exact
compute Signal-to-Noise Ratio (SNR): 2, o
SNR = |—- q;, grid
— g”d - 2
SR N, |Ste-a
. i=1
NppC: avg. # of particles per cell Nppc= N/N
2D superimposed Gaussians on 256x256 grid COMPACT: only 0.12% of coeffs
WAVELET THRESHOLDING DENOISED
ANALYTICAL Nppc=3 SNR=2.02 Nppc=205 SNR=16.89 Nppc=3 SNR=16.83

Wavelet denoising yields a representation which is:

- Appreciably more accurate than non-denoised representation
- Sparse (if clever, we can translate this sparsity into computational efficiency)
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Benchmarking Against Analytic 1D Results

* Analytic steady state solution available for a rigid line Gaussian bunch
[Derbenev & Shiltsev 1996, SLAC-Pub 7181]
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s/og

analytic -+
computed x.
sioy N,=N =64

« Excellent agreement between analytic solution and the computed

provides a proof of concept for the new code
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New PIC CSR Code: Efforts Currently Underway

Compare to 2D semi-analytical results (chirped bunch)

Compare to other 2D codes (for instance Bassi et al. 2009)

o Simulate a test chicane

Further Afield:

o Various boundary conditions
o Shielding
o Using wavelets to increase efficiency and accuracy

« Explore the need and feasibility of generalizing the code from 2D to 3D
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Summary

o Presented the new 2D PIC code:

o Resolves traditional computational difficulties using new computational
and mathematical methodologies — GPUs and wavelets

o Proof of concept: excellent agreement with analytical 1D results

o Outlined outstanding issues that will soon be implemented

o Closing in on our goal
o Accurate and efficient code which faithfully simulates CSR effects

6 October 2014 HP CSR Simulations on GPUs
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New Code: Particle-In-Cell

* Grid resolution is specified a priori (fixed grid)
* N, : # of gridpoints in X

N, : # of gridpoints in Y

Ng”.d=NX x N, total gridpts

Grid: [X. Y.]i=1’Nx

ey Jj=LN,

Inclination angle a

« Point-particles deposited on
the grid via deposition scheme

 Grid is determined so as to tightly envelope all particles
Minimizing number of empty cells = optimizing spatial resolution
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New Code: Frames of Reference

e Choosing a correct coordinate system is of crucial importance
* To simplify calculations use 3 frames of reference:

* Frenet frame (s, x) R FRENET FRAME (s, X)
. . Y LAB FRAME (X, Y)
s —along design orbit

. SECTION 1 SECTION 2 SECTION 3 GRID FRAME (X~, Y~)
x — deviation normal to

. . . DRIFT DRIFT
direction of motion

- Particle push om0 o0 R
A XV
* Lab frame (X, Y)
- Integration range design orbit Y
- Integration of retarded
potentials

e Grid frame (X~,Y™)
Scaled & rotated lab frame
always [-0.5,0.5] x [-0.5,0.5]
- Particle deposition
- Grid interpolation =
- History of the beam
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Large Cancellation in the Lorenz Force

Effective Longitudinal Force: F5.- =0 ¢ - 3, 9,A,

Traditionally difficult to track large quantities which mostly cancel out:

200 T

A

keV/m]

ffective
FY

4x107 N

-1.5¢

-2.0

A

100

keV/m]

-4

22 0
s/o

'/::: i % 100} ] 6x102
e
- B, 0, A, N=128000
2 4 -4 -2 5;0 2 4 NX:Ny:32

High accuracy ot the implementation able to track accurately these

cancellations over 5 orders of magnitude
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Semi-Analytic 2D Results: 1D Model Breaks Down

» Analytic steady state solution is justified for « = LM <<1

[Derbenev & Shiltsev 1996 ]
* Li, Legg, Terzi¢, Bisognano & Bosch 2011:

Model bunch compressor (chicane)
E =70 MeV
0,,= 0.5 mm
u=-10.56 m" energy chirp

min( F), R e e
: F) "0-? I . 1Dresults ~ - -~ 'n”"‘"::’.’:-’:—t: —7" 2Dresults

“1.1 1.15 1.2 1.25

0 P — T——T—:-F*{:a:z,:_k“-: _157_,7_'———‘
~ 02" : e

p— an( F ) (d) 1Dresults =~ ~« - ~~— 2Dresults
'0.4 5 1 X 4
1.1 1.15 1.2 1.25
s [m]
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Rozz) L,=0.3m

Lg=0.6m
Ld = O.4m

E:
AN
L, L,

1D & 2D disagree in:
Magnitude of CSR force
Location of maximum force

= 1D CSR model is inadequate

Preliminary simulations show
good agreement between 2D
semi-analytic results and results
obtained with our code
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Wavelets

Orthogonal basis of functions composed of scaled and translated versions of
the same localized mother wavelet )(x) and the scaling function ¢(x):

Yi(x)=2"yp2 x-i), kiE€Z et
A TV
f(x) = S(())¢(()) (x) + E E dlkwlk (.X) ’ Transform ——\/s\f\/\—— +
k i

Signal Constituent wavelets of different scales and positions

Each new resolution level k is orthogonal to the previous levels

Compact support: finite domain over which nonzero

In order to attain orthogonality of different scales, JDaubachies 47 Prd?;" wavelet
their shapes are strange ' /\
- Suitable to represent irregularly shaped functions o | N

-0.5

For discrete signals (gridded quantities), fast : |

15 + \ |

Discrete Wavelet Transform (DFT) is an O(MN) By S € = |
operation, M size of the wavelet filter, N signal size
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Advantages of Wavelet Formulation

Wavelet basis functions have compact support = signal localized in space
Wavelet basis functions have increasing resolution levels

= signal localized in frequency
= Simultaneous localization in space and frequency (FFT only frequency)

Wavelet basis functions correlate well with various signal types
(including signals with singularities, cusps and other irregularities)
= Compact and accurate representation of data (compression)

Wavelet transform preserves hierarchy of scales

In wavelet space, discretized operators (Laplacian) are also sparse and have an
efficient preconditioner = Solving some PDEs is faster and more accurate

Provide a natural setting for numerical noise removal = Wavelet denoising
Wavelet thresholding: If |w;|<T, set w;=0.

[Terzi¢, Pogorelov & Bohn 2007, PR STAB 10, 034201]
[Terzi¢ & Bassi 2011, PR STAB 14, 070701]
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Wavelet Compression

Modulated flat-top particle distribution

P(ZnXn)

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02
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Fraction of non-zero coefficients

retained after wavelet thresholding

10"

fraction of non-zero coefficients

103}

T

db 2
db 3
db 6
db 10
sym4
sym 6
sym 8
coif 1
coif 2
coif 3
bior 4,4
bior 6,8

—_—

1 1 1
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108 107 108

N [number of particles]

[From Terzi¢ & Bassi 2011, PR STAB 14, 070701]
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CSR: Point-to-Point Approach

* Point-to-Point approach (2D): [Li 1998]

N
fE5,0 =4 n,F =5 1) 6 -7 (1)) DF
i=1
N .
p(F.0)=q ) n, 7 =7 (1) Charge density
i=1
J(F.0=q) By ) n, 7 -1 1)) Current density
i=1

Gaussian macroparticle

C(x=x, () +(y =y, (1)’
207

m

- 1
n, (F —r"(t) = ——ex
(T =157 (1) Py P[

m

» Charge density is sampled with N Gaussian-shaped 2D macroparticles
(2D distribution without vertical spread)

» Each macroparticle interacts with each macroparticle throughout history

« Expensive: computation of retarded potentials and self fields ~ O(N?)
= small number N = poor spatial resolution

= difficult to see small-scale structure

* While useful in obtaining low-order moments of the beam,
Point-to-Point approach'is not optimal for studying CSR
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CSR: Particle-In-Cell Approach

» Particle-In-Cell approach with retarded potentials (2D):

N
frv,n)= 6]2 8(F =1y (1)) 8(V = vy (1)) DF (Klimontovich)
i=1
N h ‘ . . -
p(x;,1) = quis(f,; - Xy 1)+ X) p(X) dX Charge density
i=l -h
— N - . h . — — —
J(x,0) = qzﬁél)(f)fé(f,; - %, 1)+ X) p(X) dX Current density
i=1 -h

* Charge and current densities are sampled with N point-charges %5-functions)
and deposited on a finite grid X, using a deposition scheme p(X)

* Two main deposition schemes

- Nearest Grid Point (NGP) aoF ' ' ]
(constant: deposits to 1P points)
- Cloud-In-Cell (CIC) p(x) NGP
(linear: deposits to 2P points)
There exist higher-order schemes b CIC
xo—'};,, S h2  n mihyZ zth,

X — macroparticle location

* Particles do not directly interact with each uwner, e _ gridpoint location

but only through a mean-field of the gridded representation
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CSR: P2P Vs. PIC

« Computational cost for P2P: Total cost ~ O(N?)

« Computational cost for PIC: Total cost ~ O(N

Integration over history (yields self-forces): O(N?) operation

ridz)
Particle deposition (yields gridded charge &gcurrent densities): O(N) operation
Integration over history (yields retarded potentials): O(Ngn.dz) operation
Finite difference (yields self-forces on the grid): O(Ngn.d) operation
Interpolation (yields self-forces acting on each of N particles): O(N) operation
Overall ~ O(N_ . 2)+O(N) operations

 But in realistic simulations: Ng”.d2>> N, so the total cost is ™ O(Ng”.dz)
Favorable scaling allows for larger N, and reasonable grid resolution

= Improved spatial resolution

grid

Fair comparison: P2P with N macroparticles and PIC with Ng”.d=N
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CSR: P2P Vs. PIC

» Difference in spatial resolution: An illustrative example
* Analytical distribution sampled with
* N=N,N, macroparticles (as in P2P)
* OnaN xN, grid (as in PIC)
* 2Dgrid: N,=N =32

Signal-to-Noise Ratio EXACT P2P N=322 SNR=2.53 PIC N=50x322 SNR=13.89
Ngvia
—2
E q;
_ i=1
_\2
E (C]i - qi)
i=1
q, exact
q; grid

e PIC approach provides superior spatial resolution to P2P approach
* This motivates us to use a PIC code
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Outline of the P2P Algorithm

N macroparticles
at t<t,
H
Integrate over particle histories
N macroparticles | to compute retarded potentials
at t=t, . and corresponding forces
3 on each macroparticle

system at t=t +At

Advance particles by At
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