PHANGS workshop, Elettra, Trieste, Italy, 4-5 December 2017

The Photon Sources for The ESRF-EBS

Joel Chavanne, Gael Le Bec European Synchrotron Radiation Facility

The European Synchrotron

OUTLINE

ESRF-EBS

Insertion Devices in EBS context

- Migration & adaptation
- Minimum ID gap
- IDs schemes

Bending Magnet beamlines

Summary

* EBS: Extremely Brilliant Source

EBS: BRILLIANCE

ESRF Lattice	Present	EBS
Hor. Emittance [nm]	4	0.134*
Vert. Emittance [pm]	5	5
Energy spread [%]	0.1	0.095
Beta _x / Beta _z [m]	37/3	6.8/2.9
Beam current [mA]	200	200

* w/o IDs

EBS: TRANSVERSE COHERENCE

Coherence fraction (expressed in $\lambda/2\pi$)

EBS MAGNETS

IDM* group task, except IDs

- Magnet design
- Procurement (about 1000 magnets)
- Measurements and fiducialization

*IDM: Insertion Devices and Magnets

The EBS mock-up cell

PM DIPOLES: FROM CONCEPT TO IN-HOUSE SERIAL PRODUCTION

Longitudinal field steps

Design view

In a few words... 132 dipoles, 1.8 m each 6 tons of Sm_2Co_{17} Completed in October 2017 Assembly, measurement and alignment

EBS MASTER PLAN (2015-2020)

Master Plan and Major Milestones

	2015		20	16		2017			2018							2019							2020					
Planning	SOND	JFMA	A M J	J A S	OND	JF	MAN	VI I	AS	SONE) I	FΜ	A M	l l	A S	OND	ΙF	= M,	A M	l l	ΑS	OND	l L	F M	A M	l l	ΑS	O N D
User Service Mode (USM)																												
Design, Procurment																												
Production																												
Assembly																												
Dismantling																												
Installation																												
Machine Commissioning																												
Beamline Commissioning																												
Friendly Users																												

PHOTON SOURCES : INSERTION DEVICES

Situation at the restart (2020)

- Same energy: 6 GeV
- Most of the existing ID to be reused in the EBS
- About 90 magnetic assemblies installed
 - 33 standard in-air undulators
 - 18 revolver undulators
 - 13 IVUs and CPMUs
 - 8 other devices
- Length of the straight sections: 5 m
 - Same length for most of sections
 - Length reduced 6 m \rightarrow 5 m on a few sections
- Adaptation work on IVUs and CPMUs

IVU AND CPMU COMPATIBILITY ISSUES

IVU adaptation

- Integration of photon absorbers on both sides
- Modification of water cooling circuit (IVUs) & flexible transitions
- New conical chambers at both ends
- Implementation before September 2019

NEW UNDULATOR SUPPORTS

2.3 m undulator

2.3 m revolver undulator

Can be used for any refurbishment and upgrade of ID straights after EBS initial operation Two devices / ID straight, can be combined with an IVU/CPMU

CANTING IN EBS

Adaptation of the canting sections

- PM canting magnets installed since 2012
- Entry and exit angles to be provided by the main dipoles
- Nearest dipole strength reduced by 2 to 2.7 mrad
- Middle canting magnet: same as present

Beam position at beamline location

- Same as present
- Max displacement: 0.2 mm

Strength reduction 2.7 mrad

ID MINIMUM GAPS

Top-up operation for the EBS

- Smaller beam lifetime (Touschek)
- Increased beam losses at small apertures (IVUs/CPMUs)

Beam losses must be localized on collimators

- Important studies with present SR (top-up, 16 bunch)
- Validation of the beam losses model

Two collimators to be installed on the EBS

- Important studies with present SR (top-up, 16 bunch)
- Cell 13 & 24
- 30 cm long tungsten blades
- Variable horizontal position
- Important shielding around collimators

Collimator design view

COLLIMATION OPTIMIZATION

Scraper studies

- 80% of the losses relocated on the scrapers •
- 4% lifetime reduction •

Two scrapers in DR_37 of cells 13

PHANGS Workshop, J Chavanne and G Le Bec, Trieste, December 2017

CPMUs in operation

ID straight	Period [mm]	Length [m]	Gap [mm]	Peak Field [T]	РМ	Instal. date
6	18	2	6	0.88	NdFeB	Jan. 2008
11	18	2	6	1	NdFeB	Jan. 2012
31	14.4	2	5	1	PrFeB	Jul. 2016

Plans

- Large demand from beamlines
- One lab fully dedicated to CPMU/IVU construction (2020)

IN-SITU HALL PROBE MEASUREMENTS OF CPMUS

Inside the bench

Design view of the *in situ* Hall probe bench (stretched wire system not shown)

(Design in collaboration with ProActive Engineering, Spain)

IN-SITU HALL PROBE MEASUREMENTS OF CPMUS

Laser setup for the measurement of the transverse positions and roll angle of the Hall probe.

MAGNETIC MEASUREMENTS: CPMU14

CPMU14:MEASURED PHOTON BEAM SPECTRUM

Gap scan around harmonic 7 (100.75 keV) (Courtesy V. Honkinaki) Computed gap scan with error free undulator

MEASURED PHOTON BEAM SPECTRUM (CONT'D)

Energy scan from beamline 63 keV-130 keV Undulator gap 5.4 mm

(V. Honkinaki)

Computed Energy scan 63-130 keV Undulator gap 5.35 mm Ideal undulator with measured peak field 0.04 mm gap tapering Aperture: 300µm x300µm @ 30 m

CPMUS MAGNETIC ASSEMBLIES

Magnet holders

- Based on the last CPMU (14.5 mm period)
- Efficient phase error correction
- Fine tuning of individual poles

Standard design

- Now fully parameterized
- 10 mm to 21 mm period
- Adaptable to any length
- End field structure included

LN2 COOLING INFRASTRUCTURE IN EBS

LN2 cooling loop

To be implemented in the technical Liquid nitrogen (LN2) distribution in technical zone (TZ) k Preliminary design studies Project gallery Phase 1+2 For future CPMU installation LN2 outlet in each cell Available at restart of EBS Cell 32, 1 and 2 need further studies plementation of Aprox. 1/3 Cryocooler ell 32, 01, 02 2 storag necessar MTBE n2 storage ryo system SIVL* Connection

* SIVL : Super Insulated Vacuum Line

ID CONSTRUCTION FROM 2020

CDR #	Application	BL	Source
1	Coherence applications	ID10	2 x CPMU18
2	Hard X-ray diffraction microscopy	ID08	CPMU14, CPMU18
3	Large phase-contrast tomography	BM18	3 pole wiggler
4	Surface science	ID03	U27/U35
5	Extreme conditions	ID27	2 x CPMU18
6	Dynamic compression studies	ID23-ID24	CPMU18, CPMU12

BENDING MAGNET SOURCES: CONTEXT

ESRF EBS 7BA 6 GeV lattice

BM sources

Combined low field dipole-quads (DQ) \rightarrow 0.39 T DQ, $E\downarrow C = 9.3$ keV \rightarrow 0.57 T DQ, $E\downarrow C = 13.6$ keV \rightarrow 2 mrad max

Present ESRF

DBA 6 GeV lattice Very productive BM beamlines

BM sources

- → 0.856 T bending magnet, $E\downarrow C = 20.5$ keV
- → 0.4 T soft end, $E\downarrow C = 9.5$ keV
- ➔ 6 mrad max

GEOMETRICAL CONSIDERATIONS

BM X-Ray fans limited to 4 mrad due to limitations imposed on photon beam path in magnets

INCOMING BEAM(S) AT BEAMLINE (DQ2C & DQ1D ONLY)

PROPOSED ALTERNATIVE SOURCES

Options available

Short Bending Magnet (SBM)

- 2 mrad X-ray fan
- 7 SBM to be installed

2-poles wiggler (2PW)

- 1.7 mrad fan
- 2 configurations
- 6 2PW to be installed

3-pole wiggler

- 1.6 mrad fan
- 2 3PW to be installed

Peak field: 0.86 T for all sources

White beam at 25 m

SHORT WIGGLERS & SBM INTEGRATION

SBM insertion

SUMMARY

ESRF EBS

Procurement in progress, assembly started

Insertion devices

- Initial operation with present ID segments
- Operational experience very positive with CPMUs
- Large demand for CPMUs/ IVUs to anticipate
- Dedicated lab for construction of CPMUs

Bending Magnet beamlines

• New sources: SBM,2PWs,3PWs

