

Thomas Schmidt :: Paul Scherrer Institut

Undulator for SLS and SLS-2 general

December 2017

SLS: 2.4 GeV

4 Undulator Beamlines soft x-ray:8 eV – 2 keV all full polarized.

1 Undulator Beamline tender x-ray up to 8 keV

5 Undulator Beamlines hard x-ray: 5 keV – 20 keV (35keV)

5 Dipole Beamlines

3 permanent magnet Superbends

SLS Undulators overview

ID	N	Gap [mm]	B _z /B _x [T]	K _z /K _x	N _{per}	Harm	E [keV]	Туре	Magnets
SLS									
UE212/424	1	20	0.4/0.1	07.00.04	20	1 5	0.01.0.6	quasi-periodic ELM	
		20	0.4/0.1	07.09.04	39	1-5	0.01-0.8	variable period	-
UE56	2	16	0.83/0.6	4.4/3.2	32	1-5	0.09-2	twin APPLE II	NdFeB
UE54	1	16	0.79/0.54	4.0/2.7	32	3-33	0,4-8	APPLE II	NdFeB
UE44	1	11,4	0.86/0.65	3.5/2.7	75	1-5	0,3-2	fixed gap APPLE II	NdFeB
U19	1	4,5	0,86	1,5	95	3-13	5-20	in-vac hybrid	Sm ₂ Co ₁₇
U19	2	4,5	0,89	1,6	95	3-13	5-20	In-vac hybrid	NdFeB
U19	1	5,5	0,85	1,5	95	3-13	5-18	In-vac hybrid	NdFeB
U14	1	4	1,15	1,5	120	3-13	5-30	cryogenic in-vac	NdFeB
SwissFEL									
U15	13	3	1,28	1,8	265	1	2-12*	In-vac Dy enhanced	NdFeB
UE40**	26	3	1.05/1.05	3.8/3.8	40	1	0.18-1.8*	APPLE III	SmCo ₅

* incl. e⁻ energy

** design phase

SLS 2.4 GeV

soft x-ray variable polarization APPLE II twin UE56 (<- BESSY II) UE54 soft & tender x-ray fixed gap UE44 quasi-periodic elm

hard x-ray

in - vacuum (<- SPring-8)

work horses: U19 -> 20keV

CPMU U14 -> 35keV

gap min = 4mm, 2m long

2.9 - 3.4 GeV SwissFEL 2 - 8 GeV

soft x-ray variable polarization APPLE-X (DELTA II) UE38, Chic Modes in - vacuum U15 3mm, 4m long -> 12keV U10 sc ?! (2025 ff) -> 36keV

Aramis

Ardinis	Main parameters	
Hard X-ray FEL, λ=0.1-0.7 nm	Wavelength from	1 Å - 70 Å
Linear polarization, variable gap, in-vacuum Undulators	Photon energy	0.2-12 keV
First users 2017	Pulse duration	1 fs - 20 fs
Athos	e' Energy	5.8 GeV
Soft X-ray FEL, λ=0.65-5.0 nm	e ⁻ Bunch charge	10-200 pC
Variable polarization, Apple undulators	Repetition rate	100 Hz
First users 2020		

SwissFEL ARAMIS U15

SwissFEL: Aramis U15

PSI measurement benches

Laser based SAFALI Measurement systems¹):

1st without tank: trajectory and phase 2nd inside tank: phase and calibration field vs gap

Senis Hall probe, linear motor laser based axes stabilization Juri 2.0

Senis Hall probe, piezo stepper laser based axes stabilization

¹⁾ SAFALI concept by T. Tanaka

U15 optimization step 1: center the axis

measure axial B differential screws in columns

U15 opt. step 2: long range errors

block keeper

flexor design

precise tuning with adjustable wedge

Yuri 2.0 automated optimization

after 1st Yuri run

after 3rd Yuri run

IDs for SwissFEL: Aramis U15

Aramis U15 Series Performance

Undulator Performance: magnet strength

- Monochromator Energy Scan over the third harmonic, from 6345eV to 6465eV, in steps of 15eV, using Si111 crystals.
- SR from SARUN15 observed on MCP at K = 1.2

Individual Pointing Direction

- Undulator being measured set to K = 1.2, with the rest at K = 0.072 (full open)
- The monochromator was set to 6375eV, third harmonic, using Si111 crystals.

Need to fine adjust K and electron trajectory in the individual undulators

First time resolved Pilot Experiment by SwissFEL: Semiconductor to metal transition in Ti3O5 nanocrystals

Collaboration: SwissFEL and M. Cammarata et al., Univ. Rennes

-3rd Harm: 6.6 KeV (fund. 2.2 KeV 220 µJ) -Laser: 800nm, 42 mJ/cm²

Aramis

	Hard X-ray FEL, λ=0.1-0.7 nm
	Linear polarization, variable gap, in-vacuum Undulators
	First users 2017
ho	NS .
	Soft X-ray FEL, λ=0.65-5.0 nm

Variable polarization, Apple undulators First users 2020

Main parameters

Wavelength from	1 Å - 70 Å		
Photon energy	0.2-12 keV		
Pulse duration	1 fs - 20 fs		
e' Energy	5.8 GeV		
e ⁻ Bunch charge	10-200 pC		
Repetition rate	100 Hz		

Legend:

APPLE-X Configuration

Self-seeding chicane

Baseline

Not Baseline

Optimization of undulator module length

Summary of FEL performance as a function of the undulator module length

[E. Prat et al, JSR 23, 861 (2016)]

- In most of FEL facilities, the module length is not optimized based on FEL performance
- Typical undulator module length is about 3-5 m for robust operation
- Most of the modes benefit from shorter modules.

Based on physics and costs Final module length is 2 m (in original design was 4 m)

APPLE II

APPLE X advanced modes I

with RADIA (red square markers).

transverse gradient undulator

tapered undulator (with yaw by cam-shaft movers

M. Calvi et al, Transverse gradient in Apple-type undulators, J. Synchrotron Rad. (2017). 24, 600-608

APPLE X advanced modes II

45° linear polarization in standard APPLE (II or X) operation has longitudinal forces (green)

the mode above gives 45° without any longitudinal forces

proposed by EUXFEL

APPLE X operation Full control on fields & gradients

Full symmetry

circular

$$\hat{B}_{x1} = \hat{B}_{y1}$$
$$\partial_x \hat{B}_{x1} = \partial_y \hat{B}_{y1}$$

$$K = 4\kappa \hat{B}_{x1} \cos\frac{1}{2}\phi_{e}$$
$$\partial_x K = G_0 (1 - \xi^2)^{1/2}$$

$$\kappa = \frac{e\lambda_{\rm U}}{2\pi mc}$$

$$G_0 = 2\kappa \left(\partial_x \hat{B}_{1x} - \partial_x \hat{B}_{1y}\right)$$

$$\xi = K/K_0$$

Full control of

- Energy
- Polarization
- Gradients

inclined

 $K = 2\kappa \hat{B}_{1x} [2 + \cos \phi_{\rm e} + \cos(\phi_{\rm e} \pm 2\phi_{\rm \bar{p}})]^{1/2}$ $\partial_{\mathbf{x}}K = 0$

M. Calvi et al., Transverse gradient in Apple-type undulators, <u>J. Synchrotron Rad.</u> 2017, <u>24</u>, 600-608

PAUL SCHERRER INSTITUT

Spectral control: bandwidth increase

In a TGU there is a dependence of the undulator field on the transverse position

 $\frac{K(x) - K_0}{K_0} = \alpha x$

 K_0 : on-axis field α : gradient

A tilted beam traveling through a TGU will produce broadband XFEL radiation. Easy to tune!

[E. Prat, M. Calvi, and S. Reiche, JSR 23, 874 (2016)]

- Additional possibilities of the scheme:
 - Multiple colors with slotted foil at the undulator entrance
 - FEL pulse compression (sign of the chirp can be controlled)
- Alternative method: energy-chirped electron beam + optimize laser distribution at the source. Results: ~3% bandwidth for 0.1 nm and 5.8 GeV @ Aramis

XFEL pulses of 20% bandwidth and few GW power can be obtained

Simulations (10% bandwidth)

In a first section the "tail" is centered and lases at λ_1 . The electron beam is delayed and the "head" is realigned. In a second stage the "head" lases at λ_2

[S. Reiche and E. Prat, JSR 23, 869 (2016)] [A. Lutman et al, Nat. Photonics 10, 745 (2016)]

Tunability for Athos

Parameters	Values
Individual Pulse Length	2 – 10 fs
Individual Pulse Energy	50 – 250 μJ
Relative Delay	-10 to 1000 fs
Photon energy	Factor 5 (e.g. 240 – 1200 eV)

SwissFEL UE38 (APPLE X)

SwissFEL UE38 (APPLE X)

Athos undulator frame (cast iron)

Athos undulator frame (cast iron)

UE38 keeper block

Serial block 4 periods each

Hall probe bench with Yuri 3.0

Hall probe bench with Yuri 3.0

Magnets for Athos UE38

shaped field magnets: inhomogeneous magnetization performance study¹ with Arnold Magnetics, Lupfig AG, Switzerland under way

UE38 magnet material options

Magnet A	Magnet B	shaped field	К	Photon Energie [eV] @ 2.65 GeV	Photon Energie [eV] @ 2.9 GeV	in Specs @ 2.65 / 2.9 GeV
SmCo ₅	SmCo₅	nein	3.42	256	306	ja / nein
SmCo ₅	SmCo₅	ja	3.57	7 238 285		ja / nein
SmCo ₅	Sm2C017	nein	3.74	220	263	ja / nein
SmCo ₅	Sm2C017	17 ja 3		203	243	ja / ja
Sm ₂ Co ₁₇	Sm2C017	nein	3.95	199	238	ja / ja
Sm ₂ Co ₁₇	Sm2C017	ja	4.11	185	222	ja / ja

axial magnet A responsible for shift dependent kicks

better performance of SmCo₅

Sm₂Co₁₇ better suited for use in shaped field because of less anisotropy

Ultra-thin Vacuum chamber for UE38

diameter5.0mmwall thickness0.2mmmagnet aperture 6.5mmminimum gap3.0mm

Kupferrohr:

Wandstärke

Innendurchmesser 5mm

0.2mm

Phase Matching

Athos Phase Matcher / Chicane

Chicane mode:

 $200 \mu m$ offset and $1.5 \mu m$ phase advance

Phase matcher mode:

at 80mm gap

SwissFEL & SLS-2: concept

SLS 2.0 2.4 GeV

soft x-ray variable polarization APPLE II / APPLE X

hard x-ray

in - vacuum

U19 -> CPMU14 / 12

U10 sc ?!

gap min = 4mm, 2m long

gap min = 4mm, 2m long

2.9 - 3.4 GeV **SwissFEL** 2 - 8 GeV

soft x-ray variable polarization APPLE-X (DELTA II)

UE38, Chic Modes

in - vacuum U15 3mm, 4m long -> 12keV

U10 sc ?! (2025 ff) -> 36keV

SLS-2 beamline options - I

courtesy Andreas Streun

SLS-2 beamline options - II

1	Injection				free exp area
2	RF	EEHG			free exp area
3	EEHG	UE38		ADRESS	coherent radiation
4		U14		MS	
5	U60	U14	XIL	μΧΑS	XIL use of 1 UE56?
6		U14		PX I	
7	UE54	UE50	Phoenix	X-Treme	
8	RF	3HC			entrance
9		U14		cSAXS	
10		U14		PX II	
11	UE56	UE56	SIM		
12	UE90	UE90	SIS		

4 free slots

SLS-2 Undulator Control

SLS: VME / OMS motor control + Siemens S5 PLC Design < 2000 (2 cabinets per ID) SwissFEL: Beckhoff Motion Control combines motor control safety compact, low price fast Ethercat connection

cabinets on board

SLS-2: will adapt SwissFEL design external cabinets: 1 per ID one design for all types APPLE X ist most complex

SIS Undulator UE212/424

UE212 quasi-periodic electromagnetic

Polarization: LH, LV, circular 2 x 21 periods

Field: 145 x 28 A turns (120 x 20 A turns) B_{max} = 0.4T (0.1T) E_{min} = 10eV (100eV*) *20eV Update

> ELETTRA (I) (Design Wiggler) PSI (Quasiperiodic Undulator) BINP (Ru) (manufacturer)

-

Quasi-periodic harmonic suppression

Harmonic suppression in Photoemission Spectra

SIS: replacement of the elm qp undulator UE212

S. Sasaki et al, POSSIBILITY FOR QUASI-PERIODIC KNOT-APPLE UNDULATOR, 2014

first device under construction for SSRF

QUASI-PERIODIC KNOT-APPLE UNDULATOR

LH, LV, circular without on axis power quasi-pedicic field distribution

drawback: only fundamental

with K = 0.5 U80 613eV

U90 545eV

U100 490eV

pretty complicated

Workshop on IDs for 4GLS (Berkeley 2017):

Quasiperidic APPLE devices are too much compromise

twin APPLE undulators

Single Shot Polarimeter

LH, LV out of circular light no harmonics, no power on axis standard operation for higher energies use of harmonics possible range 10 (15) eV – 600 (1000) eV

polarization control with single shot polarimeter

courtesy Jens Viefhaus (DESY)

SwissFEL UE38 prototype

SLS-2 UE90 design study

Field enhancement: 8%

Note: PSI builds 4 UE90 of APPLE X type for EUXFEL

UE90 2x1.9m 2x19 periods

PAUL SCHERRER INSTITUT

Stokes Parameter for different phases between crossed undulators

Energy [eV]	B _{circ} / B _{LH} [T]	K _{circ} / K _{LH}	Aperture @25m [mm x mm]	Flux _{Crossed} P > 80% [v 10 ¹⁴]	Aperture @25m [mm x mm]	Flux _{Crossed} P > 70% [x 10 ¹⁴]	Aperture @25m [mm x mm]	Flux _{LH} P 100% [x 10 ¹⁴]
12	0.84 / 1.19	7.05 / 9.98	4 x 4	3.2	5.6 x 5.6	6	10 x 10	15
20	0.65 / 0.92	5.45 / 7.70	3 x 3	2.9	4 x 4	5.3	9 x 9	16
40	0.45 / 0.64	3.79 / 5.35	2 x 2	2.4	2.8 x 2.8	4.9	8 x 8	18
60	0.36 / 0.51	3.04 / 4.29	1.6 x 1.6	2.3	2.24 x 2.24	4.4	6 x 6	18
90	0.29 / 0.41	2.41 / 3.41	1×1	1.3	1.76 x 1.76	3.9	4 x 4	15

Pros	Cons			
.				
No on-axis harmonics	5 x less flux at 12eV			
better than quasi-periodic	10 x less at 90eV			
	degree of polarization 80%			

Scheme with a undulators allows to use both modes

Depending on photon energy, flux and polarization demand by the users

1	2	3	4	5	
1.46E+15	2.30E+14	1.00E+15	6.90E+14	6.10E+14	
	16%	69%	47%	42%	
7.67E+14 3.	3.22E+13	2.90E+14	5.70E+13	3.40E+13	
	4%	38%	7%	4%	
3.60E+14	1.64E+13	3.86E+13	2.70E+13	5.20E+13	
	5%	11%	8%	14%	

Vacuum chambers for APPLE X at storage rings

Vacuum chambers for single pass machines: round, simple Injection requires larger horizontal apertures vacuumchambers with antechambers complicated to impossible

from undulator point of view

On-axis injection schemes highly desireable

Various on-axis injector schemes under development at ALS, BAPS, SOLEIL, SLS

Only when these schemes are in baseline a project can profit!

ADRESS UE44

fixed gap APPLE II

Upgrades required: Add cam-shaft mover to allow (in situ) alignment

EEHC for ADRESS

Echo Enabled Harmonic Generation

R. Molo et al., ECHO-ENABLED HARMONIC GENERATION AT DELTA, Proceedings of IPAC2011, San Sebastián, Spain

EEHC for ADRESS

EEHC in SLS-2 in 2 straights

Straight 1

Rf cavities + modulator 1

Arc which is the dispersive element R_{56}

Straight 2

modulator 2 + phase matcher + APPLE X

A unique opportunity for SLS-2!

negligible increase of energy spread

Note: EEHC developed for FEL

Studies for

Hefei storage ring, DELTA, SLS-2, ...

about 1% density modulation Increase in coherent flux: 100-10000

SIM UE56 / Phoenix, X-treme UE54

APPLE II

UE56 twin undulators

UE54 serves two beamlines X-treme soft x-ray Phoenix tender x-ray 37th harmonic !!! SLS-2 lattice allows a second undulator

Hydraulik Drive for shift gap axis

Hydraulik driven Cylinder as alternative to motor/spindel drive system

System: Bosch Rexroth 4WRPDH

valve with integrated regulation and interfaces or μ -controller with valve

resolution valve: 0.001%

cycle time: <1ms

regulations:

- position
- force
- pressure
- positon/pressure, position/force
 connecitons:

EtherCAT, EtherNet, PROFINET, ...

https://www.boschrexroth.com/de/de/produkte/produktgruppen/industriehydraulik/ stetigventile/regel-wegeventile/direktgesteuert/integrierter-achsregler/iac-multiethernet/iac-multi-ethernet

Hydraulik Test Stand

PX, c-SAXS, $\mu\text{-XAS}$ U19 / MS U14

Photon Energy

SLS-2 strategy for hard x-ray undulators

U19 in Vacuum Undulatoren -> Cryo Undulatoren CPMU14 based on PrFeB

Upgrade of the existing in-vacuum undulators

Higher fields, but smaller horizontal pole widht <- small emittance

needs to be realized in the year 2023 machine dark time

CPMU14 based on NdFeB at 135K: no change

All in-vacuum undulators can be installed in any place

In-situ Measurement / Optimization Bench

SLS – SLS-2 Reference table

			Brilliance	Flux	Flux dens	coh. Flux		tot Power	Brilliance
		@ Energy				х	у	[kW]	increase
ADRESS	SLS	600	2.00E+19	1.60E+15	2.60E+17	0.03	0.45	4.3	
UE44	SLS-2	800	6.00E+20	1.60E+15	7.60E+17	0.38	0.84		30.00
SIM	SLS	500	1.70E+19	1.50E+15	2.30E+17	0.03	0.48	4.0	
UE56	SLS-2	500	4.00E+20	1.50E+15	6.80E+17	0.41	0.86		23.53
PHOENIX/X-treme	SLS	500	7.00E+18	7.00E+14	8.80E+16	0.03	0.39	1.8	
UE54	SLS-2	500	1.50E+20	8.00E+14	2.00E+17	0.33	0.83		21.43
SIS UE212	SLS	60 / 150	1.6E18 / 3.3E18	1.00E+15	7E16 / 9E16	0.23	0.92	1.9	
UE90	SLS-2	60 / 400	9.4E18 / 1.3E20	1.20E+15	7E16 / 2.8E17	0.83	0.97	8.3	39.39
PXI/II, cSAXs, μ-XAS	SLS	8000	8.00E+18	3.00E+14	4.90E+16	0.002	0.07	2.3	
U19	SLS-2		3.70E+20	3.00E+14	2.56E+17	0.040	0.18		46.25
	SLS	12000	3.00E+18	1.10E+14	1.80E+16	0.001	0.05		
	SLS-2		1.40E+20	1.10E+14	9.50E+16	0.030	0.12		46.67
	SLS	20000	4.80E+17	1.70E+13	3.00E+15	0.001	0.03		
	SLS-2		2.20E+19	1.70E+13	1.45E+16	0.020	0.07		45.83
MS	SLS	8000	1.66E+19	5.70E+14	9.30E+16	0.002	0.07	1.8	
U14	SLS-2		8.80E+20	5.90E+14	6.20E+17	0.040	0.18		53.01
	SLS	12000	8.60E+18	3.20E+14	5.00E+16	0.001	0.05		
	SLS-2		4.30E+20	3.20E+14	2.90E+17	0.030	0.12		50.00
	SLS	20000	2.20E+18	8.10E+13	1.30E+16	0.001	0.03		
	SLS-2		1.10E+20	8.10E+13	7.50E+16	0.020	0.07		50.00

Calculated with Spectra 10.0

Note: for SIS the SLS-2 calculations are based on a UE90 instead of a UE212

Super longitudinal gradient bending

SwissFEL Outlook

E.R. Moog, R.J. Dejus, and S. Sasaki , Light Source Note: ANL/APS/LS-348 James Clarke, FLS 2012, March 2012

Staggered array with HTS bulks

C.P.Bean, Rev. Mod. Phys. 36 (1964) 31.

Staggered array with HTS bulks

C.P.Bean, Rev. Mod. Phys. 36 (1964) 31.

Thanks for your interest

and special thanks to

- J. Chavanne, O. Chubar, P. Elleaume for RADIA, SRW ...
- T. Tanaka for SPECTRA