Photons At the Next Generation Storage rings Trieste, December 5th, 2017

Beamline design issues related to the future SOLEIL upgrade

François Polack

Synchrotron Soleil

PHANGS, 5-12-2017

outline

- Present /upgraded source
 - Electron / photons source parameters
- Light collection
 - Collection efficiency
 - Unwanted light : heat load
- Tolerances
 - Stability
 - Optics quality
- Some case studies

Machine parameters SOLEIL/ Upgrade

SS	long	medium	short	upgrade
σ _x (μm)	281	182	388	7
σ_{z} (µm)	17.3	8.1	8.1	7
σ' _x (µrad)	19.2	30	14.5	7
σ'_{z} (µrad)	2.2	4.6	4.6	7
Long SS Medium SS Short SS Upgrade	β _x (m) 10 4 18 1	β _z (m) 8 1.8 1.8 1	η _x 0.2 0.2 0.2 0.2	(m) 2 13 28
Natural horizor Energy dispers Coupling = 1%	ital emittance = ion = 1.03 / 0.80 /100%	: 3900 → 72 p 6 10 ⁻³	om.rad	

Courtesy P. Brunelle

From electron to experiment

• Photon source emittance gain

- electron emittance gain is $\sim 4 \ 10^3$
- What is transfer to the photon source ?

• What will be the benefit for beamlines ?

- Smaller beam size on sample higher flux/ unit area (illumination) high coherence fraction
- Better flux collection
- Smaller optics size
- Optics simplifications :
 - less elements, shorter, more stable, beamlines
- Requirements on optics quality

Monochromatic Photon emittance

- Photon source = Electron beam + Undulator
- Independent convolution of divergence and source size contributions for central cone $\sigma'_{ph} \approx \sqrt{\lambda}/L$ $\sigma_{ph} \approx \sqrt{\lambda}L/4\pi$ (diffraction limit)
- Parameters for a 4m long undulator

- Electron and photon source size and divergence convolute independently
- Energy spread widening

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \implies \text{shift emission peak } @\lambda$$

$$\Delta \theta \approx \frac{N}{2\gamma} \frac{\Delta E}{E} \left(1 + \frac{K^2}{2} \right)$$

~ 10 - 20 µrad

Beamlines from a designer point of view

We want to preserve the small source size throughout

for soft X-rays to hard X-rays

We used to rely mostly on reflective optics

Because they are achromatic What do we need to change ?

Elimination of 1st optics vignetting

• Small divergence beams have long waists

 $\sigma^2 = \sigma_0^2 + (\sigma' Z)^2 \implies \text{waist length} \sim 3 ?/?'$

- With present β > 10m and non zero horizontal dispersion, the first optics at 20 m is often vignetting on high energy BL
- With $\beta = 1m$
 - All optics are in the far field of the source
 - Size of the optics match the source divergence

Thermal load

• On axis Power density

 $dP / d\Omega \left[W / mrad^{2} \right] = 10.84 B_{0} \left[T \right] E^{4} \left[GeV \right] I \left[A \right] N$ Number of periods

Expected increase

 $L \rightarrow x 2$; $B \downarrow 0 \rightarrow x 1.5$

Power density do not depend on electron beam size and divergence But useful collection aperture does. Reduction of the collection aperture in hard X-rays

Stability issues

• Stability requirements scale with the source size

- On the upgraded machine they will be \sim 7 μ m in both planes
- This is almost the present vertical size
- Stability level required for the 1st optics at 20 m :
 0.5 μm in position ; 10 -20 nrad in angle
- Presently most beamline are sensitive to vertical thermal drifts
 - Improvement of the hutches temperature stability and
 - more rigorous mechanical design requested
- Vibration stability
 - Angular vibration induced by the cooling systems are the most critical.
 - Rigidity of the cooling lines is hardly compatible with precise position and angle adjustment of the optics under beam.
 - Thermo-mechanical engineering is highly required

Mirror slope errors

• Mirror imperfections can be characterized by slope errors

- Small wavelengths → geometrical optics
- Image widening \propto focus distance (q)
 - Tangential : $w_t = 2 \sigma'_t q$
 - Sagittal : $w_s = 2 \sigma'_s \sin \theta q$

Two ways of reducing slope error influence

- 1. Choose a short focus distance
 - Focusing stage only
 - Diaphragm in a intermediate image may help decoupling beamline optics influence (flux cost)
- 2. Use sagittal focusing geometry
 - Only in the most sensitive (dispersion) direction
 - Widely used on present machine due to source size asymmetry
 - Upgraded SOLEIL will require tighter tangential tolerances
 - Source at 20 m & $\sigma_{\rm h}$ = 7 μ m $\implies \sigma'_{\rm t} << 0.2 \ \mu$ rad

Wavefront preservation

- Light scattered from wavefront imperfections
 - Reduces peak (specular) intensity ; generate a halo around it.
- Wavefront quality often expressed by Strehl ratio
 S=specular flux/total flux = (total flux scattered flux)/total flux
 = 1 TIS (Total Integrated Scatter)
- Scatter is related to the power spectral density of phase fluctuations
 TIS=exp(-2???)??)?2 =exp(-2????)??)?2 ?↓??↓?2 = variance of optical path

For imaging : $S > 0.8 \iff$? 12 > ? 12 / 180Maréchal criterion

Diffraction limited optics

- For focusing: phase errors must meet Maréchal criterion
 - $\sigma_{\Delta} = 2 \sin \theta \ \sigma_h < \frac{\lambda}{14} \quad \text{(total for all surfaces)}$
 - Tolerances are relaxed by grazing angle

- Rough estimate using $\theta = \theta_c/2$ for simple metal coating

Consequences of small grazing angles

• Incidence changes along a curved surface

- Difficult to exceed \pm 30% of central value θ_0
- > Image aperture angle NA < 0.3 sin θ_0

• Reduced aperture angle impacts spatial resolution

Minimum focus size is inversely proportional to aperture angle even for a perfect surface $\rho = \lambda/2NA$ eg: E= 20 keV ; grazing angle 0.09 deg \Rightarrow NA= 0.47 10⁻³ $\rho = 66$ nm

Transverse aperture size is also very small eg : F= 100 mm \implies aperture size= 100 μ m

Multilayer coatings

- **Tuning condition** $m\lambda = 2\Lambda \sqrt{\overline{n}^2 - \cos\theta^2}$ $m\lambda = 2\Lambda \sin\theta \text{ if } \theta >> \theta_c$
- Standard material pairs
 Mo/B4C Cr/B4C W/B4C
- Stable down to ~ 2.5 nm period
- Bandpass / reflectivity tradeoff
 Number of effective periods

Multilayer / single layer mirror

	Single layer	multilayer	
Grazing angle θ	~?/35 nm	?/2? /4 nm</td	
Max Aperture ~ $\theta/3$	/100 nm</td <td colspan="2"><?/12 <i>nm requires ML gradient</td>	/12 <i nm requires ML gradient	
Ultimate Resolution	50 nm	6 nm	
RMS shape errors (Maréchal)	< 1.3 nm	< 0.15 nm	

Mirror quality progress

• SOLEIL Beamline mirrors

- Conventional polishing + Ion figuring correction
- Best tangential RMS slope errors on length 200 300
 - 2006 : 0.5 μrad
 - 2011: 0.25 μrad
 - 2016: 0.23 μrad
- Fluid Jet polishing
 2014: 50 nrad (0.2 nm RMS) length 300 mm
- Fluid jet polishing is mastered by one manufacturer only !

 Mirrors are the only achromatic X-ray optics
 Also required as blanks for non achromatic optics: gratings and multilayer mirrors

Effect of shape errors on a fully coherent beam

Beam on LCLS CXI station on Sept 2016 KB mirrors are 450 mm long with 2 nm RMS shape errors.

Courtesy Daniele Cocco (SLAC)

Beam on LCLS CXI station on May 2017New KB mirrors, 1 m long, fluid jet polished0.3 nm RMS measured by manufacturer(0.5 nm measured at LCLS)

Laboratory Metrology

• LTP or NOM

Slope measurement on linear traces

• Phase shift interferometer 2D height maps (with field stitching)

LTP

Sensitivity: ~ 50 nrad Accuracy: \pm 0.1 – 0.2 μ rad

Deflection response is not perfectly linear

- must be calibrated
- can be corrected by measuring the surface with a series of tilts

Sensitive to thermal drift

- requires a thermally stabilized enclosure $(\pm 0.1 \text{ °C } !!)$
- repeated measurements needed for ultimate accuracy

Height errors computed by integration

Tuning of a 1m long bender

LTP cross-check on a 22 m radius mirror

Phase shift interferometry

Small field required to reach 10 mm⁻¹ spatial frequency \implies **Stitching** Sensitivity: ~ 0.1 nm = $\lambda/5000$ Accuracy: $\pm 0.3 - 0.5$ nm

Uses a reference surface which is not perfectly known

- must be calibrated
- can be extracted from a set of overlapping measurements of a good flat surface

Stitching procedures

- cannot rely on relief correlation (smooth surfaces)
- Must be guided by other measurements to avoid long range distortion of the shape

wide pupil interferometer (RADSI) autocollimator or LTP trace

SiO₂ differential coated mirror

Case study 1 : microfocus 20 KeV

Present state

- Source 650 μm x 20 μm (HxV FWHM)
- Transfer to secondary source in extension building
 - p= 27 m , q =58 m M=2.1
 - Secondary source slit cut to 40 x 40μm flux loss ~ 40
 - KB demagnification
 - p=83 m, q =0.15m M=1/550
 - Spot size ~ 70 -100 nm
- Total length : 165 m

• Upgrade

- Source $15 \mu m \times 15 \mu m$ (HxV FWHM)
- Direct KB demagnification
- p= 40 m , q =0.2 m M=1/200
- Spot size ~ 70 -100 nm
- Total length :40 m
- Fit on the experimental floor
- Shorter length ⇒
 better thermal stability
 less vibration issues

Case study 2 : VUV beamline

- Energy range 5 40 eV
- Present state
 - Electromagnetic 10 m long undulator 16 periods of 64 cm
 - Collection aperture 0.6 x0.6 mrad² (oversized)
 - @5 eV K ~ 6.7 ; B_{max} = 0.15 T
 - Total radiated power ~500 W : incident power on optics <100 W

• Upgrade

- Permanent magnet undulator, 4 m long 16 periods of 25 cm
- @ 5 eV K~ 11 ; $B_0 = 0.47 T$
- Radiated power density ~2 kW : need to reduce the aperture to keep P <100 W

Case study 3: photoemission beamline ~ 1 keV

Requires slope errors < 0.1 µrad

Conclusion

- The close match of electron and undulator divergence (small β) enables a good transfer of source size gains to image size
- Smaller source size mean less demagnification
 - More compact design
 - Smaller aperture and optics size
- This size change directly affects the requirements on optics quality
 - slope errors < 0.1 μrad RMS
 - Shape errors < 1 nm RMS
 - Synchrotron facilities should develop the metrology to control such specifications
- Stability requirements scale in the same proportions
 - Thermal drift
 - Vibrations (eg induced by cooling)

