

Beamlines at MAX IV – optical design and commissioning

Andreas Lassesson Beamline Project Coordinator

Outline

Overview of MAX IV beamlines

Beamline design philosophy

Commissioning & early users

Beamline timeplan

- Time resolved experiments (<100 fs) 1.
- 2. Nano/micro diffraction and imaging
- 3. X-ray absorption spectroscopy
- Protein crystallography 4.

2012

- 5. RIXS
- 6. High pressure photoemission spectroscopy
- 7. ARPES

2011

Beamline timeplan

- SAXS
- Imaging; STXM, CXI
- Photoemission spectroscopy
- RIXS
- XPEEM
- Gas phase spectroscopy

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Phase I	– 7 bea	amlines								
		Pha	Phase IIa – 6 beamlines							
					Pha	ase IIb –	>2 bean	nlines		

Beamline timeplan

- Imaging; tomography
- Diffraction
- SAXS

2011

• Micro-crystal protein crystallography

Commissioning status

- 4 beamlines with external or expert users in 2017
- 2 beamlines have commissioned optics & are finishing endstations
- 3 beamline is about to commission optics with endstations mostly in place

Low emittance: high flux, small source, low divergence

MAXIV

PRL 104, 193002 (2010)

Nat Phys 4, 351 - 353 (2008)

Optical design

- The optics in MAX IV beamlines are designed to meet scientific design targets while exploiting the properties of the MAX IV sources
- Simulations are typically done by beamline project managers with assistance of experts in various simulation software:
 - Ray ray tracing, Rami Sankari
 - XRT ray tracing & wavefront propagation: Konstantin Klementiev
 - MESH ray tracing and heat load calculations: Peter Sondhauss
- Output:
 - Beamline layout
 - Shape & type of optical elements
 - Min. slope errors & roughness
 - Spot size, beam divergence etc.

Optical design – soft X-ray beamlines

- Standardized design criteria
- cPGMs blazed and laminar gratings
- 8 beamlines

vertically and focuses the beam horizontally at the exit slit.

Plane mirrors (M2) & 2 plain gratings, Monochromator cPGM is used to select photon energy **Toroidal mirror (M3)** Focuses the beam vertically at the exit slit.

Exit slit

Ellipsoidal mirror (M4) Focuses beam at the sample position

Stability – optical systems

- Stiff (high spring constant) & light (low mass): high eigenfrequencies
- Design process in collaboration with vendors

Grating monos: Toyama

Mirror chamber: FMB (Prototype)

FEA: 112Hz Measured: 95Hz

FEA: 119Hz

Stability responsible: Brian N Jensen

Gratings

Blazed and laminar gratings from HZB are used at all 8 soft X-ray beamlines at MAX IV

Substrates:

- Plane & curved
- Slope errors <0.02 arcsec substrates

Specifications:

- Blaze angles: 0.5 6 degrees
- Line density: <100 4000 l/mm
- Length:
- Energy:
- 120 300 mm <5 - 2000 eV
- Coatings: 40nm Au, Rh

Technology Center for Optical Precision Gratings, HZB

Gratings - design

Example 1:

"Work horse" grating for the BLOCH beamline:

- Blaze angle: 2 degrees
- Line density: 800 l/mm
- Length: 140 mm
- Energy: 10 1000 eV
- E/dE: 1E4
- Flux: 1E13 ph/s

Example 2:

High energy resolution at low energies at the BLOCH beamline:

- Blaze angle: 6 degrees
- Line density: 2400 l/mm
- Length: 140 mm
- Energy: 10 200 eV
- E/dE: 1E5
- Flux: 1E11 ph/s

Simulations by Rami Sankari

High energy resolution (VERITAS)

- RIXS beamline
- Energy range 250 1600 eV at 3 GeV ring
- Team:
 - Marcus Agåker (Uppsala U)
 - Conny Såthe
 - Shih-Wen (Winnie) Huang
 - Nial Wassdahl

High energy resolution (VERITAS)

Resolution contributions:

- Source size (diffr. limited)
- (slope errors of the) optics
- Slit size
- Mono: (moderately) high resolution, high flux, small spot
- Gratings: 1200 l/mm & 2400 l/mm

Early commissioning results:

• Approx. 30000

The VERITAS spectrometer

- 10 m long, Rowland type
- > 35 000 resolving power
- 980 mm long collimating mirror to increase collection efficiency
- 2 cylindrical gratings
- MCP based detector with 2D DLD readout (150 ps time resolution)

High spatial resolution (SoftiMAX)

Karina Thånell Jörg schwenke

- Imaging beamline
- Beam size: \geq 10 nm (STXM) 20 μ m (CXI)
- Energy range: 275 2500 eV
- First users: 2019
- Two branchlines for:
 - Scanning Transmission X-ray Microscopy (STXM)
 - Ptychography (STXM)
 - Fourier Transform Holography (CXI)
 - Resonant soft X-ray scattering (CXI)

K. Giewekemeyer, et al., Optics Express 19, 1037 (2011).

SoftiMAX – optical design

Simulations by:

- Karina Thånell
- Rami Sankari
- Konstantin Klementiev
- Walan Grizolli

where to put FZP?

what is the result if finite beam emittance?

what are the coherence properties?

how to isolate the coherent part?

How to isolate the coherent part? - XRT

Simulations by: Konstantin Klementiev Using XRT: https://pypi.python.org/ pypi/xrt

High spatial resolution (NanoMAX)

Ulf Johansson Gerardina Carbone Sebastian Kalbfleisch Alexander Björling Ulrich Vogt, KTH Anders Mikkelsen, LU

NanoMAX – commissioning: ZP test setup (11/2016)

Albanova NanoFabl ab

100 nm zone plate

NanoMAX - KB endstation

- Hyperpolished mirrors in KB configuration
- Focal spot: 40-200 nm
- Sample holder: Goniometer, <5 kg
- 2D pixel detector on robot arm
- Fluorescence detector

NanoMAX – commissioning KB setup

Ptychography at 9.5 keV

Imaging of Siemens stars

Beam properties close to focus

Spot size and phase

Beam sideview

NanoMAX – first user results at KB endstation

2.4

1.6

0.8

0.0

-0.8

-1.6

-2.4

Nano wires: Jesper Wallentin, NanoLund, Lund University

Direct resolution: XRF map:

HIPPIE

Source	EPU53			
Energy	110 – 2,000 eV (LP)			
Resolving	30,000 - 40,000			
power				
Flux (500 mA)	> 10 ¹² @ R = 10,000			
Spot size	50 x 50 μm²			

Andrey Shavorskiy Beamline Manager Jan Knudsen Beamline Scientist

Suyun Zhu Research Engineer

Joachim Schnadt Spokes Person

HIPPIE - AP XPS endstation

- General Purpose/Catalysis cell available
- Electrochemical/Liquid/Jet cell testing 2018
- AP-XPS up to 30 mbar (N2) tested
- Gas dosing system for up to 8 individual gases and their mixtures
- 4 user groups so far, more to come in 2018 !

MAXIV

MAX IV Laboratory is a national research infrastructure hosted by Lund University

• Accelerators and basic lab infrastructure:

International beamlines:

Thank you!

