

The European Synchrotron

Partial coherence in undulator beamlines at ultra-low emittance storage rings

Manuel Sanchez del Rio

20160203 srio@esrf.eu

1

MOTIVATION:

Fully characterize and calculate coherence properties of EBS beamlines.

- Introduction (with a bit of theory)
- Methodology: Coherent mode decomposition.
- Results for
 - **ESRF: comparison** $H\beta$ -L β vs new EBS
 - ID16A

ESRF AND EBS LATTICES

EBS – ESRF U18 2m @ 8 keV L=2m observed at 30m

.

Low Beta U18

High Beta U18

EBS U18

FROM THEORY TO SOFTWARE

Wofry Wavefront Propagation

Wofry Beamline Elements

Æ

The European Synchrotron

Statistically distributed bunches

Order of 10⁹ electrons per bunch

$$f(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\gamma}, \boldsymbol{z}) = C \cdot \exp(-\mathbf{u}^{\mathrm{T}} \Sigma^{-1} \boldsymbol{u})$$

Phase space vector $\boldsymbol{u} = (x, \theta_x, y, \theta_y, \gamma, z)$ 6x6 covariance matrix Σ :

statistics of the emission

Kim, K.-J. Proc. SPIE 0582 (1986)

8

Mutual coherence function $\Gamma(\mathbf{r}_{1}, t_{1}, \mathbf{r}_{2}, t_{2}) = \langle E^{*}(\mathbf{r}_{1}, t_{1})E(\mathbf{r}_{2}, t_{2})\rangle_{e}$ $\left(\Delta_{\mathbf{r}_{1}} - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t_{1}^{2}}\right)\left(\Delta_{\mathbf{r}_{2}} - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t_{2}^{2}}\right)\Gamma(\mathbf{r}_{1}, t_{1}, \mathbf{r}_{2}, t_{2}) = (4\pi)^{2}\Gamma_{Q}(\mathbf{r}_{1}, t_{1}, \mathbf{r}_{2}, t_{2})$ $\Gamma_{Q}(\mathbf{r}_{1}, t_{1}, \mathbf{r}_{2}, t_{2}) = \langle Q^{*}(\mathbf{r}_{1}, t_{1})Q(\mathbf{r}_{2}, t_{2})\rangle_{e}$ $Q(\mathbf{r}, t) = -\left(\frac{1}{\epsilon_{0}}\nabla\rho + \mu_{0}\frac{\partial J}{\partial t}\right)$ $\langle E^{*}(\mathbf{r}_{1}, t_{1})E(\mathbf{r}_{2}, t_{2})\rangle_{e} = \langle E^{*}(\mathbf{r}_{1}, 0)E(\mathbf{r}_{2}, t_{2} - t_{1})\rangle_{e}$

Storage ring emission is wide-sense stationary if

- the bunch length is long enough
- the radiation frequency is large enough
- the monochromator resolution is not too high

Geloni, G., et al. Nucl. Inst. and Meth. in Physics 588 463-493 (2008)

Frequency representation:

$$\langle E^*(\boldsymbol{r}_1, \boldsymbol{t}_1) E(\boldsymbol{r}_2, \boldsymbol{t}_2) \rangle_e \xleftarrow{\mathsf{FT}} \langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e$$

n consequence:
$$\langle E^*(\boldsymbol{r}_1, \omega_1) E(\boldsymbol{r}_2, \omega_2) \rangle_e \longrightarrow \langle E^*(\boldsymbol{r}_1, \omega) E(\boldsymbol{r}_2, \omega) \rangle_e$$

Cross spectral density (CSD) [everything] MUCh Simpler

$$W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) = \langle E_1^*(\boldsymbol{r}_1, \omega) E_2(\boldsymbol{r}_2, \omega) \rangle_e$$

Spectral density (kind of "intensity" / "energy")

$$S(\mathbf{r},\omega) = W(\mathbf{r},\mathbf{r},\omega)$$

Spectral degree of coherence

$$\mu(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) = \frac{W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega)}{\sqrt{S(\boldsymbol{r}_1, \omega)S(\boldsymbol{r}_2, \omega)}}$$

(incoherent) $0 \le |\mu(\mathbf{r}_1, \mathbf{r}_2, \omega)| \le 1$ (comp coherent)

$W(r_1, r_2, \omega)$ four-dimensional for fixed frequency at a distance z.

Propagation: $W'(\mathbf{r}_1, \mathbf{r}_2, \omega) = \int W(\mathbf{r}_1', \mathbf{r}_2', \omega) h^*(\mathbf{r}_1, \mathbf{r}_1', \omega) h(\mathbf{r}_2, \mathbf{r}_2', \omega) d\mathbf{r}_1' d\mathbf{r}_2'$

 $N_x, N_y \in [100, 1000].$

Memory size ~ $N_x^2 N_y^2$

 $100^4 = 10^8$ to $1000^4 = 10^{12}$

complex numbers (16 bytes), i.e. at least Gb to Tb.

Computation of W takes a lot of time, i.e. calculation of 10^8 to 10^{12} elements.

Propagation of W takes a lot of time for calculating 10^8 to 10^{12} 4d integrals.

The cross spectral density function *W* can be represented in **coherent modes**:

$$W(\mathbf{r}_1, \mathbf{r}_2, \omega) = \sum_n^\infty \lambda_n(\omega) \phi_n^*(\mathbf{r}_1, \omega) \phi_n(\mathbf{r}_2, \omega)$$

Trade **4d** spatial dependencies

 $\phi_n(\pmb{r},\pmb{\omega})$ coherent mode

12

to **sum of 2d** at fixed frequency.

 $\lambda_n(\omega)$ eigenvalue (mode intensities)

Some coherent mode properties:

- Orthonormal (uncoupled in L₂ sense)
- Fully coherent if and only if one coherent mode
- $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution or spectrum)
- Maximizing spectral density (compact, controlled)

Each mode propagate like a wavefront so one can build the CDS at any point by propagating the modes to that point.

COMSYL

The coherent modes are the solution of the homogenous Fredholm equation of second kind:

$$A_W[\phi_n] = \lambda_n \phi_n$$

i.e. an eigenvalue problem for:

$$A_W[f](\boldsymbol{r}_2) = \int W(\boldsymbol{r}_1, \boldsymbol{r}_2, \omega) f(\boldsymbol{r}_1) d\boldsymbol{r}_1$$

Solved by COMSYL (Coherent modes for synchrotrons) Open-source at:

https://github.com/mark-glass/comsyl

Coherent modes of X-ray beams emitted by undulators in new storage rings Mark Glass and Manuel Sanchez del Rio EPL, 119 3 (2017) 34004

DOI: <u>https://doi.org/10.1209/0295-5075/119/34004</u> Free preprint: <u>https://arxiv.org/abs/1706.04393</u>

See the COMSYL Wiki pages <u>https://github.com/mark-glass/comsyl/wiki</u> for more information including the full thesis manuscript.

STRATEGY

COMPARISON EBS VS CURRENT LATTICE: MODE SPECTRUM

$$\lambda_n(\omega)$$
 eigenvalue (mode intensities)
 $d_n(\omega) = \frac{\lambda_n(\omega)}{\sum_j \lambda_j(\omega)}$ occupation (mode distribution)

 d_0 is the Coherent fraction

COMPARISON EBS VS CURRENT LATTICE (IMAGING BEAMLINE)

A typical "coherence beamline": 2m U18 E₀=8keV

At S₃ after second diagonalization:

EBS will deliver more flux and more coherence

ID16A U18 L=1.4m @17.225 keV

J. C. da Silva et al.: https://doi.org/10.1364/OPTICA.4.000492

18

RAY TRACING

COMSYL EBS SOURCE (CF 0.028)

🕨 YouTube 🕫 Search Single mode Spectral Density 40 40 20 20 [mrl] X [mμ] Υ 0 0 --20 -20 -40 -40 -50 50 100 -100 -50 50 100 150 -1000 -150-150150 0 Y [µm] X [µm] Cumulated occupation **Cumulated Spectral Density** 1.0 40 Cumulated occupation 0.8 20 -,[μμ] 0.6 0 0.4 -20 -40 0.2 -100 -50 50 100 0 0.0 X [μm] 0 200 400 600 800 1000 Mode index LD 0:00 / 0:18 **€ HD**

Coherent modes of synchrotron radiation for EBS

https://youtu.be/h24RrJZaQ80

COMSYL HIGH BETA SOURCE (CF 0.0013)

YouTube FR

Search

Coherent modes of synchrotron radiation for ESRF-High beta

https://youtu.be/GqJkfv186x0

SRW – ZERO EMITTANCE

ESRF

100

100

SRW - EBS

×10⁸

2.5

1.5

0.5

×10⁷

3

×10⁷

18

16

14

12

10

6

4

-2

 $\times 10^{7}$

2

x coordinate [nm]

SRW – HIGH BETA

-100

-50

0 x coordinate [nm]

×10⁶

14

12

10

6

×10⁶

100

100

100

×10⁶

1.5

3.5

2.5

1.5

0.5

100

50

2

 $\times 10^{6}$

The European Synchrotron

TODO

ID16A

- Propagate modes
- Effect of slope errors:
 - SHADOW/Hybrid
 - WISE

Complete Oasys Wave Optics Tools

- Communication, propagation and element tools
- 1D simulations to help defining precision parameters
- COMSYL

- The synchrotron beam emission is due to a collaborative effect of the electrons in a bunch that are responsible of the partial coherence of the beam.
- Zero emittance rings are really "diffraction limited" providing a single coherence mode. Upgrade storage ring emission must be treated as partial coherence.
- For storage rings emission all coherence properties can be deduced from the Cross Spectral Density. Its storage and propagation is usually unmanagleable by present computers.
- COMSYL introduces a new accurate coherent mode decomposition that:
 - Provides a method of effective storage of CSD
 - Introduces the new concept of "mode spectrum" that quickly summarizes the main coherence properties at a given point of the beamline
 - Computes accurately the coherent fraction
 - Allows to use known propagation methods to propagate modes
 - Permits computing coherent properties of the beam at *any* point of the beamline

• Applications for a simplified coherence beamline and a nanofocusing ultimate beamline (ID16A) are discussed

Mark Glass Rafael Celestre Giovanni Pirro

Luca Rebuffi

Julio Cesar Da Silva Ray Barrett

Thank you!

