PAUL SCHERRER INSTITUT



A. Streun :: on behalf of SLS-2 project team :: Paul Scherrer Institut

### SLS-2 : Upgrade of the Swiss Light Source

PHANGS workshop, Dec. 4-5, 2017, Trieste

# Outline

- SLS the Swiss Light Source
  - Layout, History and Achievements
- SLS-2 Concept
  - Radiation equilibrium and Multi-Bend Achromats
  - Longitudinal Gradient Bends and Reverse Bends
- SLS-2 Lattice design
  - Optics, Layout, Emittance and Acceptance
- SLS-2 Components
  - Magnets, Vacuum Chambers, Injection
- Summary & Outlook
- ◆ SLS-2 sources: Undulators, Brightness etc.
   → presentation by Thomas Schmidt



A. Streun, PSI

# SLS history



Type of crystal: protein single crystal Exposure time: Distance to the xtal: 100 mm Beam current: Oscillation range: 0.5 deg ID gap: Wavelength: 1.106 A Beam size:

PHANGS workshop, Trieste, Dec. 4-5, 2017

10 sec 50 mA 10 mm 90 x 50 μm

# **SLS beam lines**



A. Streun, PSI

SLS-2: Upgrade of the Swiss Light Source

PHANGS workshop, Trieste, Dec. 4-5, 2017

# **SLS** major achievements

#### Reliability

- > 5000 hrs user beam time per year
- 97.6% availability (12 year average 2005-16; 99.1 % in 2016)
- Top-up operation since 2001
  - constant beam current 400-402 mA over many days

#### • Photon beam stability $< 1 \ \mu m$ rms (at frontends)

- )) fast orbti feedback system ( < 100 Hz]
  - undulator feed forward tables, beam based alignment, dynamic girder realignment, photon BPM integration etc...
- Ultra-low vertical emittance:  $1.0 \pm 0.3$  pm
  - model based and model independent optics correction
  - high resolution beam size monitor developments

# The new light sources generation

SLS: 17 years of very successful operation...

... but emittance 5 nm at 2.4 GeV not competitive in near future



# **Basics: how to get low emittance ?**

# Electron storage ring: **Radiation Equilibrium**

independent of initial conditions



# Minimum equilibrium emittance

- Maximal radiation damping
  - increase radiated power  $\Rightarrow$  pay with RF-power  $\Rightarrow$  Damping wigglers:  $\Sigma$  |deflection angles| > 360°
- Minimal quantum excitation
  - keep off-momentum orbit close to nominal orbit
  - minimize dispersion at locations of radiation (= bending magnets)



- Focusing into bending magnet to suppress dispersion.
- Many short bending magnets (= small angle  $\phi$ ) to limit dispersion growth:  $\varepsilon \sim \phi^3$  $\phi = 2\pi / N_{cell}$  and  $N_{cell} = C / L_{cell} \rightarrow \varepsilon \sim C^{-3}$

#### ➡ Multi-Bend Achromat (MBA)

 $\Rightarrow$  <u>Miniaturization</u> of components: reduce cell length  $L_{cell}$ 

#### The Multi-Bend Achromat (MBA)



# **Application of MBA to SLS-2**

#### Upgrade task: factor >30 lower emittance (< 150 pm) + harder X-rays (> 50 keV)

- SLS challenge: small circumference (288 m)
- No space for very many lattice cells (MBA)
- No space for damping wigglers
- Scaling of new ring designs to SLS upgrade:



# SLS-2 novel lattice cell



#### Standard MBA cell

- quadrupoles to focus dispersion
- dispersion at center > 0
   (in periodic cell)

### SLS-2 modified MBA cell

- displaced quadrupoles
   = reverse bending magnets (RB)
- dispersion at centre  $\rightarrow 0$   $\checkmark$
- longitudinal field variation in dipole magnet: max. *B* at center
  - = longitudinal gradient bend

# ⇒ up to 5× lower emittance than conventional cell

#### ... in a nutshell - the way to minimum emittance



#### How LGB and RB work together



## SLS-2 7-BA



#### Beam size

#### rms envelopes for 10% emittance coupling (no IBS) emittances 98 pm / 10 pm



| Periods  |         | 3        |
|----------|---------|----------|
| Length   | [m]     | 290.400  |
| Angle    | [deg]   | 360.000  |
| AbsAngle | [deg]   | 561.600  |
| TuneA    |         | 39.19298 |
| TuneB    |         | 15.30746 |
| ChromA   |         | 0.000    |
| ChromB   |         | 0.000    |
| Alpha    | [xE-3]  | -0.133   |
| JA       |         | 1.66685  |
| JB       |         | 1.04354  |
| Energy   | [GeV]   | 2.400    |
| EmitA    | [nm rd] | 0.098    |
| EmitB    | [nm rd] | 0.010    |
| dE/turn  | [keV]   | 554.4    |
| Espread  | [xE-3]  | 1.036    |
| TauA     | [ms]    | 5.031    |
| TauB     | [ms]    | 8.036    |
| TauE     | [ms]    | 6.503    |
| Location |         | BSOM     |
| Position | m       | 36.300   |
| BetaA    | m       | 0.209    |
| AlphaA   |         | 0.0000   |
| BetaB    | m       | 5.318    |
| AlphaB   |         | 0.0000   |
| Disp X   | m       | -0.0012  |
| Disp'X   | rad     | 0.0000   |
| Disp Y.  | m       | 0.0000   |
| Disp'Y   | rad     | 0.0000   |
| PhiA/2pi |         | 4.8989   |
| PhiB/2pi |         | 1.9134   |
| curly H  | m       | (to do)  |
| OrbitX   | mm      | 0.0000   |
| Orbit X' | mrad    | 0.0000   |

# Lattice parameters

| Name                                           | SLS*)           | SLS-2 <sup>#)</sup>                    |
|------------------------------------------------|-----------------|----------------------------------------|
| Emittance at 2.4 GeV [pm]                      | 5069            | <b>102</b> → <b>126</b> <sup>(*)</sup> |
| Lattice type                                   | 12×TBA          | 12× <b>7</b> BA                        |
| Circumference [m]                              | 288.0           | 290.4                                  |
| Total <i>absolute</i> bending angle            | 360°            | 561.6°                                 |
| Working point Q <sub>x/y</sub>                 | 20.43 / 8.22    | 39.2 / 15.30                           |
| Natural chromaticities C <sub>x/y</sub>        | -67.0 / -19.8   | -95.0 / -35.2                          |
| Optics strain <sup>1)</sup>                    | 7.9             | 5.6                                    |
| Horizontal damping Partition J <sub>x</sub>    | 1.00            | 1.71                                   |
| Momentum compaction factor [10 <sup>-4</sup> ] | 6.56            | -1.33                                  |
| Radiated Power [kW] <sup>2)</sup>              | 208             | 222                                    |
| rms energy spread [10 <sup>-3</sup> ]          | 0.86            | 1.03 → 1.07*)                          |
| damping times x/y/E [ms]                       | 8.9 / 8.9 / 4.4 | 4.9 / 8.4 / 6.5                        |

- 1) product of horiz. and vert. normalized chromaticities C/Q
- 2) assuming 400 mA stored current, bare lattice without IDs
- \*) SLS lattice before FEMTO installation (<2005)
- #) SLS-2 with 3 superbends

A. Streun, PSI

 including intra-beam scattering for 1 mA bunch current (400 mA in 400 of 484 buckets; 500 MHz), 10 pm vertical emittance, 1.4 MV RF voltage, 3<sup>rd</sup> harmonic cavity for 2.2×bunch length.



# Tunnel modification in 3 long straights SLS-2 lattice and existing SLS girders



A. Streun, PSI

# Straight sections















**U19** 























·····

free space

1L Injection

**3M ADRESS** 

5L µXAS/FEMTO

7M Phoenix/X-Treme

& **RF-3HC** 

9L SIS & XIL

2S RF

4S MX

6S PXI

8S RF

10S PX II

11M SIM

12S cSAXS

PHANGS workshop, Trieste, Dec. 4-5, 2017

# **Dynamic Acceptance**

## a challenge for low emittance lattices

- Dynamic acceptance (for low coupling) =
  - horizontal dynamic aperture including physical limitations (beam pipe)

→ off-axis injection efficiency / possibility

- lattice momentum acceptance
   momentum dependent horizontal dynamic aperture
   Touschek lifetime
- vertical limit ≈ physical aperture (mini gap undulators)
   → Coulomb scattering lifetime

# Dynamic acceptance optimization method

- Phase cancellation
  - cell tunes  $\Delta v_x = 3/7 \approx 0.428$  and  $\Delta v_y = 1/7 \approx 0.143$   $\Rightarrow$  cancellation of all regular sextupole and octupole resonances over 7 cells
    - cell tune  $\Delta v_x \approx 0.43$  most effective for dispersion suppression by reverse bend.
- Minimization of higher order terms
  - amplitude dependent tune shifts (ADTS) (analytic)
  - 2<sup>nd</sup> order sextupole / 1<sup>st</sup> order octupole resonances
  - higher order chromaticities (numeric)
  - $\rightarrow$  7 sextupole and 6 octupole families
- direct optimization of dynamic apertures
  - multi-objective genetic algorithm (MOGA)
    - used for previous lattice version, not yet for the CDR version.

. Bengtsson, M. Aiba, M. Ehrlichman

# **Dynamic aperture**



Diffusion maps (stable  $\Leftrightarrow$  unstable) for bare (i.e. error-free) lattice  $\bigtriangledown$  in {x,y} space in { $\Delta p/p, x$ } space  $\eqsim$ color defines stable motion (4000 turns), white=unstable

- · · · · physical aperture limit from r = 10 mm beam pipe
- - - physical aperture with undulator gaps (  $4\ mm$  gap on  $2\ m$  length)
  - approx. injected beam from booster (3 $\sigma$ )

M. Böge, J. Bengtsson, M. Aiba

PHANGS workshop, Trieste, Dec. 4-5, 2017

# **RF bucket**

![](_page_23_Figure_1.jpeg)

RF bucket for 1.4 MV, 500 MHz, w/o and with 3HC

• small  $\alpha_1 \rightarrow$  transition to "alpha bucket" at 2 MV

• large  $\alpha_2 \rightarrow$  asymmetric momentum acceptance

# **Correlated misalignments**

![](_page_24_Figure_1.jpeg)

A. Streun, PS

SLS-2: Upgrade of the Swiss Light Source

PHANGS workshop, Trieste, Dec. 4-5, 2017

![](_page_25_Figure_1.jpeg)

SLS-2: Upgrade of the Swiss Light Source

S. Maag, M. Böge, K. Dreyer et al.

# **Orbit correction**

![](_page_26_Figure_1.jpeg)

SLS-2: Upgrade of the Swiss Light Source

PHANGS workshop, Trieste, Dec. 4-5, 2017

# **Dynamic aperture with errors**

![](_page_27_Figure_1.jpeg)

120 seeds (12 misalignments × 10 multipole errors) girders/joints/elements:  $60/20/30 \ \mu m$  rms cut  $2\sigma$ 

- —— mean dynamic aperture —— +/- sigma
- ..... physical aperture limit from r = 10 mm beam pipe
- -- physical aperture with undulator gaps ( 4 mm gap on 2 m length)
  - > approx. injected beam from booster (3 $\sigma$ )

A. Streun, PSI

M. Böge J. Bengtsson M. Aiba

### **Momentum acceptance and Touschek Lifetime**

![](_page_28_Figure_1.jpeg)

 <sup>1</sup> H and V dynamic aperture as function of momentum (120 seeds)

 Local momentum acceptance (120 seeds)

 Touschek Lifetime: 2.8±0.4 hrs

 9.3±1.4 hrs
 10 pm

vertical emittance: 5 pm bunch length: 2.4 mm (no 3HC) 1 mA / bunch (400 mA total), IBS not included linear RF-mom.acc. used: 1.4 MV → 5.2% 10 pm 5.7 mm (with 3HC)

M. Böge, J. Bengtsson, M. Aiba

A. Streun, PSI

## Magnets 1 - compound LGB

longitudinal/transverse gradient compound bend

use low field at LGB ends for vertical focusing gradient  $\rightarrow$  save space, increase  $J_x$ 

![](_page_29_Figure_3.jpeg)

![](_page_29_Figure_4.jpeg)

#### work in progress

Alternatives:

- discrete

quadrupoles?

 distributed gradient?

- incorporation
   of sextupole
   component too?
- tunability?

A. Streun, PSI

### Magnets 2 - reverse bends and others

- Reverse bend →
   = quad off center
  - RC and PM versions
- Quadrupoles
  - 72 T/m
  - R = 13 mm
- Sextupoles  $\rightarrow$ 
  - including
     horizontal and vertical
     corrector coils → →
  - R = 13 mm
- Octupoles
  - including tuning quadrupoles and skew quadrupoles
  - R = 15 mm

![](_page_30_Figure_12.jpeg)

### Magnets 3 - superbend

![](_page_31_Figure_1.jpeg)

ARMCO<sup>R</sup> or V-permendur) to enhance the field and reduce the stray field

C. Calzolaio, S. Sanfilippo, A. Anghel, S. Sidorov

#### Longitudinal gradient superbend

- split racetracks + solenoids
- B-field profile full width half maximum (FWHM): 40-70 mm.
- B-field peak:  $\approx 6$  T.

![](_page_31_Figure_8.jpeg)

![](_page_31_Picture_9.jpeg)

Cryostat assembly

PHANGS workshop, Trieste, Dec. 4-5, 2017

#### Vacuum system

- Alternating vacuum sections
  - antechambers in LGB areas ightarrow
  - copper tubes in RB areas
- NEG coating
  - 1 μm in antechamber
  - 500 nm in beam pipe
     → turbulent bunch lengthening threshold 2.0/3.5 mA without/ with 3<sup>rd</sup> harmonic cavity (required: >1 mA) (incl. resistive wall, tapers, BPMs)
  - $< 10^{-9}$  mbar after 70 Ah
- High power density absorbers
  - ESRF design
  - CuCrZr material
    - flange knife edge machined from same material ightarrow

![](_page_32_Figure_12.jpeg)

#### M. Hahn, L. Schulz et al.

### Injection

![](_page_33_Figure_1.jpeg)

A. Streun, PSI

34/36

## SLS-2 status

- Science Case
  - Version 1.0, Nov. 2016
    - http://ados.web.psi.ch/SLS2/CDR/Science\_Case/bookmain.pdf
- Conceptual Design Report
  - DRAFT Sep. 5, 2017
    - <u>http://ados.web.psi.ch/SLS2/CDR/Doc/cdr.pdf</u>
  - CDR review meeting, Sep. 26-27, 2017
  - Final version < 22.12.2017 ⇒ PSI-report 17-03
- Submission to SNF < 31.12.2017 (Swiss National Science Foundation)
  - Swiss research infrastructure roadmap 2021-24
  - total budget 100 MCHF
    - (83 machine + 17 beamlines, without salaries)

| Phil Willmo       | at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Switz Light Sour  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Paul Scherrer Ins | Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interes           | and the second se |
| (and              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

![](_page_34_Picture_14.jpeg)

#### **SLS-2** schedule

![](_page_35_Figure_1.jpeg)

![](_page_36_Picture_0.jpeg)

# Summary

#### Design of a...

- competitive
- compact
- novel
- low emittance Lattice

Confidence in... - off axis injection - beam lifetime

Challenging... - magnet design - tolerances - time schedule

Thank you !

![](_page_36_Picture_10.jpeg)