Exploiting the structures of ultra-thin films and adsorbates on graphene

using X-ray Photoelectron Diffraction
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Why Ultra-thin Layers? During the recent years researches have revealed interesting properties of ultra-thin metal and oxide films that make

these materials particularly suitable for the application Iin nano-electronics, gas sensing and magnetic data storage devices [1]. Their physical and
chemical properties are strictly related to the peculiar atomic arrangement in the outer surface layers. However, their structural determination is still a
challenging issue because of the complex lateral arrangement and mismatch at the metal-oxide interface. Among the available surface science
techniques, X-ray Photoelectron Diffraction have the great advantage of being sensitive to chemically non-equivalent atomic species sitting in the first
atomic layers. Since the long-range order is not required, this approach can be applied to determine the local atomic arrangement of complicated

specimens such as ultra-thin oxide films and adsorbates on epitaxial graphene.
XPD data Analysis:

s Theoretical calculations provide us the XPD
pattern expected from a trial structure.

X-ray Photoelectron Diffraction (XPD) is used to reveal the local

atomic geometry (crystal symmetry, interatomic distances, bond lengths and
angles) of the system under investigation. Long-range order Is not required. High
energy-resolution photoemission with synchrotron radiation allows us to
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Information. Sterdogtapitoan o Iterative_m_ethodg by impl_ementation of R-
hV of a XPD pattern factor minimization algorithms (Steepest

T[T Descent, Genetic algorithm) are applied to
a n | search for the best final structure with the
i / 5 lowest R-factor.
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p(2%2)-K/graphene/Ir(111) Strain relaxation in epitaxial

Nickel nano-islands are epitaxially -
grown on Rh(111). The large lattice Nl/ Rh(%lll)

mismatch between Ni and Rh (8%)
introduces significant tensile stressin
the Ni overlayers. This is released |-«
when the thickness of Ni islands
reaches to 5 ML. At this NI coverage,
a p(2x2)-O phase 1s formed under
oxygen chemisorption. e evaluated
the Ni layers strain relaxation
behavior. We found an exponential
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Potassium doped graphene represents a model
system describing the interaction between alkali
atoms and the structurally and electronically
anisotropic single carbon layer. It handles
extremely fascinating issues such as the effects of
the electron charge transfer and redistribution on
both the conduction properties of graphene, and
the iInteraction strength between graphene and
substrate. XPD Investigations proofed the quite
large distance of K layer from the supported
graphene as predicted by DFT calculations [2].
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on epitaxial graphene (orange atoms). ; Left: a model for the p(2x2)-O phase on 5 ML high Ni-island/Rh(111). The interlayer distance variation and the first Ni layer

buckling are visible. Right: exponential attenuation of Ni lattice constant with increasing distance from the interface layer.

Formation of RhO, film can
Jecieneq - S mo;:iify ;he_reacczztg/ity_gftt_he Rh
(ax2) unit cel YAV surface during CO oxidation.
ol NAYAVAYAY E By means of XPD approach the
A quasi-2D nickel oxide is observed during oxidation of epitaxial Ni films. It theoretical O-Rh-O ftri-layer

presents strong local atomic rippling and lateral reconstruction. Conventional PR T o “ g =g - model is confirmed [4].
monochromatic X-ray source (hv = 1486.6 eV) is employed. In this way, Synchrotron radiation Is used as

forward scattering characterizes the main diffraction features. excitation source, thus allowing
us to work In electron

backscattering regime.
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As shown in the picture above,
| the oxide-to-substrate interface
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Total R-factor =0.23




